Journal of Shandong University(Engineering Science) ›› 2018, Vol. 48 ›› Issue (5): 124-130.doi: 10.6040/j.issn.1672-3961.0.2018.172

• Electrical Engineering • Previous Articles     Next Articles

Multi-scale assessment of wind-solar generation resources based on continuous wavelet transform

Fei WANG1(),Shizhan SONG2,Yongji CAO3,*(),Hongtao XIE1,Xinhua ZHANG1,Jian ZHANG2,Tian XIAO3,Yawen ZHAO3   

  1. 1. State Grid Shandong Electric Power Company, Jinan 250001, Shandong, China
    2. Zaozhuang Power Supply Company, State Grid Shandong Electric Power Company, Zaozhuang 277100, Shandong, China
    3. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education (Shandong University), Jinan 250061, Shandong, China
  • Received:2018-05-04 Online:2018-10-01 Published:2018-05-04
  • Contact: Yongji CAO E-mail:wf6102@163.com;caoyongji1991@163.com
  • Supported by:
    国网山东省电力公司科技资助项目(2017A18)

Abstract:

Taken into account the assessment of areal wind and solar generation resources, a multi-scale assessment approach using the continuous wavelet transform was proposed. Based on the National Aeronautics and Space Administration (NASA), the wind speed and solar irradiation data were obtained and then preprocessed into capacity factors via virtual generation systems. From the viewpoint of time and space, the quantitative indices of energy potential, variability and complementarity were established to capture the attributes of areal wind and solar resources. The multi-scale variabilities and complementarities were extracted by the continuous wavelet transform to analyze the damping effect on output power and estimate the optimal scale. Zaozhuang City was taken as a case study to validate the effectiveness of proposed approach, of which the results indicated that there were inherent variability and complementary characteristics of wind and solar resources and the reasonable planning of hybrid generation systems in optimal scale could damp the power fluctuation.

Key words: wind and solar generation, resource assessment, NASA, space-time distribution, variability, complementarity, continuous wavelet transform

CLC Number: 

  • TM61

Fig.1

The schematic diagram of virtual measurement sites in study area"

Table 1

Parameters of the virtual wind generation system"

轮毂高度/
m
额定功率/
kW
切入风速/
(m·s-1)
切出风速/
(m·s-1)
额定风速/
(m·s-1)
转换效率/
%
65 850 3.0 13.5 25.0 95.00

Table 2

Parameters of the virtual photovoltaic generation system"

额定功率/W 开路电压/V 短路电流/A 模块尺寸/mm 转换效率/%
255 38.0 8.9 1650×992×35 12.48

Table 3

Wind resource reserve and variability of Zaozhuang region"

虚拟观测点序号 风电出力均值uw 风电非零出力概率Pro, w 风电变异系数Vw
S1 0.233 5 0.818 6 1.108 7
S2 0.228 0 0.819 9 1.106 7
S3 0.238 4 0.823 5 1.110 1
S4 0.245 3 0.818 8 1.114 4
S5 0.234 9 0.817 5 1.108 9
S6 0.243 6 0.824 2 1.121 0
S7 0.255 3 0.818 8 1.105 4
S8 0.244 6 0.812 1 1.094 5
S9 0.247 8 0.817 3 1.109 3

Table 4

Solar resource reserve and variability of Zaozhuang region"

虚拟观测点序号 光伏出力均值uf 光伏非零出力概率Pro, f 光伏变异系数Vf
S1 0.127 0 0.543 2 0.712 6
S2 0.127 8 0.543 4 0.711 8
S3 0.127 2 0.543 4 0.706 8
S4 0.127 6 0.543 3 0.714 5
S5 0.129 2 0.543 4 0.711 8
S6 0.129 9 0.543 5 0.709 8
S7 0.126 8 0.543 4 0.715 2
S8 0.127 3 0.543 5 0.714 8
S9 0.127 9 0.543 5 0.714 0

Table 5

Wind-solar complementary features of Zaozhuang region"

虚拟观测点序号 变异平抑系数Cv
S1 0.323 1
S2 0.311 4
S3 0.306 5
S4 0.330 2
S5 0.315 0
S6 0.322 7
S7 0.326 0
S8 0.311 0
S9 0.322 8

Fig.2

The schematic diagram of wind generation resource variability in different time scales"

Fig.3

The schematic diagram of solar generation resource variability in different time scales"

Table 6

Wind generation resource variability in different time scales"

虚拟观测点序号 风电12 h尺度波动系数Gw 风电6 h尺度波动系数Gw 风电1 h尺度波动系数Gw
S1 805.435 4 267.618 2 0.073 8
S2 569.496 6 241.433 3 0.065 1
S3 616.634 4 232.294 6 0.077 4
S4 981.034 2 305.547 2 0.101 0
S5 701.500 3 278.767 0 0.065 9
S6 662.407 5 290.498 1 0.082 0
S7 1 337.753 7 339.686 1 0.093 1
S8 1 083.062 6 290.165 4 0.087 4
S9 915.765 0 292.197 3 0.078 0

Table 7

Solar generation resources variability in different time scales"

虚拟观测点序号 光伏12 h尺度波动系数Gf 光伏6 h尺度波动系数Gf 光伏1 h尺度波动系数Gf
S1 23 817.507 8 5 259.121 1 0.092 5
S2 24 130.025 4 5 350.986 3 0.091 6
S3 24 027.246 1 5 400.227 1 0.118 9
S4 24 014.234 4 5 255.398 4 0.100 0
S5 24 668.632 8 5 409.656 3 0.108 9
S6 24 944.914 1 5 522.150 9 0.084 2
S7 23 749.951 2 5 147.780 8 0.086 2
S8 23 901.509 8 5 188.373 0 0.073 2
S9 24 136.068 4 5 250.260 7 0.071 0

Table 8

Complementary features of areal wind resources and solar resources of sub-area S5 in different time scales"

虚拟观测点序号 12 h尺度波动平抑系数Cg 6 h尺度波动平抑系数Cg 1 h尺度波动平抑系数Cg
S1 0.119 3 0.501 4 0.421 2
S2 0.171 1 0.475 8 0.349 2
S3 0.245 7 0.458 3 0.355 0
S4 0.121 2 0.538 5 0.444 2
S5 0.160 6 0.509 9 0.413 4
S6 0.206 8 0.494 0 0.324 7
S7 0.110 1 0.553 6 0.403 3
S8 0.126 9 0.502 5 0.400 6
S9 0.155 2 0.472 3 0.422 1
1 刘振亚. 全球能源互联网[M]. 北京: 中国电力出版社, 2015.
2 刘振亚. 中国电力与能源[M]. 北京: 中国电力出版社, 2012.
3 鲁宗相, 黄瀚, 单葆国, 等. 高比例可再生能源电力系统结构形态演化及电力预测展望[J]. 电力系统自动化, 2017, 41 (9): 12- 18.
LU Zongxiang , HUANG Han , SHAN Baoguo , et al. Morphological evolution model and power forecasting prospect of future electric power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41 (9): 12- 18.
4 张恒旭, 施啸寒, 刘玉田, 等. 我国西北地区可再生能源基地对全球能源互联网构建的支撑作用[J]. 山东大学学报(工学版), 2016, 46 (4): 96- 102.
ZHANG Hengxu , SHI Xiaohan , LIU Yutian , et al. Support of the renewable energy base in northwest of China on the construction of global energy interconnection[J]. Journal of Shandong University (Engineering Science), 2016, 46 (4): 96- 102.
5 李璐, 郑亚先, 陈长升, 等. 风电的波动成本计算及应用研究[J]. 中国电机工程学报, 2016, 36 (19): 5155- 5163.
LI Lu , ZHENG Yaxian , CHEN Changsheng , et al. Calculation of wind power variation costs and its application research[J]. Proceedings of the CSEE, 2016, 36 (19): 5155- 5163.
6 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34 (1): 2- 14.
DING Ming , WANG Weisheng , WANG Xiuli , et al. A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE, 2014, 34 (1): 2- 14.
7 CAO Y J , ZHANG Y , ZHANG H X , et al. Probabilistic optimal PV capacity planning for wind farm expansion based on NASA data[J]. IEEE Transactions on Sustainable Energy, 2017, 8 (3): 1291- 1300.
doi: 10.1109/TSTE.2017.2677466
8 赵书强, 刘大正, 谢宇琪, 等. 基于相关机会目标规划的风光储联合发电系统储能调度策略[J]. 电力系统自动化, 2015, 39 (14): 30- 36.
doi: 10.7500/AEPS20140920009
ZHAO Shuqiang , LIU Dazheng , XIE Yuqi , et al. Scheduling strategy of energy storage in wind-solar-battery hybrid hybrid power system based on dependent-chance goal programming[J]. Automation of Electric Power Systems, 2015, 39 (14): 30- 36.
doi: 10.7500/AEPS20140920009
9 杨迎超, 刘宏昭, 原大宁, 等. 测风数据处理与风资源评估[J]. 太阳能学报, 2012, 33 (10): 1661- 1666.
doi: 10.3969/j.issn.0254-0096.2012.10.004
YANG Yingchao , LIU Hongzhao , YUAN Daning , et al. Data processing in anemometry and wind resource assessment[J]. Acta Energiae Solaris Sinica, 2012, 33 (10): 1661- 1666.
doi: 10.3969/j.issn.0254-0096.2012.10.004
10 肖创英, 汪宁渤, 陟晶, 等. 甘肃酒泉风电出力特性分析[J]. 电力系统自动化, 2010, 34 (17): 64- 67.
XIAO Chuangying , WANG Ningbo , ZHI Jing , et al. Power characteristics of Jiuquan wind power base[J]. Automation of Electric Power Systems, 2010, 34 (17): 64- 67.
11 李芬, 陈正洪, 成驰, 等. 武汉并网光伏电站性能与气象因子关系研究[J]. 太阳能学报, 2012, 33 (8): 1386- 1391.
doi: 10.3969/j.issn.0254-0096.2012.08.022
LI Fen , CHEN Zhenghong , CHENG Chi , et al. Relationship between performances of grid-connected PV power plant and meteorological factors in Wuhan[J]. Acta Energiae Solaris Sinica, 2012, 33 (8): 1386- 1391.
doi: 10.3969/j.issn.0254-0096.2012.08.022
12 解大, 康建洲. 崇明风力资源分析及风力机组的选择[J]. 电力系统保护与控制, 2009, 37 (24): 65- 70.
XIE Da , KANG Jianzhou . Analysis of Chongming Island wind power and selection of wind turbine unit[J]. Power System Protection and Control, 2009, 37 (24): 65- 70.
13 刘晓明, 牛新生, 张怡, 等. 基于NASA观测数据的风电出力时空分布及波动特性分析[J]. 山东大学学报(工学版), 2016, 46 (4): 111- 116.
LIU Xiaoming , NIU Xinsheng , ZHANG Yi , et al. Analysis of spatial and temporal distribution of wind output and variation characteristics based on NASA observation data[J]. Journal of Shandong University (Engineering Science), 2016, 46 (4): 111- 116.
14 OKOYE C O , TAYLAN O , BAKER D K . Solar energy potentials in strategically located cities in Nigeria: review, resource assessment and PV system design[J]. Renewable & Sustainable Energy Reviews, 2016, 55 (3): 550- 566.
15 于大洋, 韩学山, 梁军, 等. 基于NASA地球观测数据库的区域风电功率波动特性分析[J]. 电力系统自动化, 2011, 35 (5): 77- 81.
YU Dayang , HAN Xueshan , LIANG Jun , et al. Study on the profiling of China's regional wind power fluctuation using GEOS-5 Data Assimilation System of National Aeronautics and Space Administration of America[J]. Automation of Electric Power Systems, 2011, 35 (5): 77- 81.
16 MARTINS F R , PEREIRA E B , SILVA S A B , et al. Solar energy scenarios in Brazil: Part one: resource assessment[J]. Energy Policy, 2008, 36 (8): 2853- 2864.
doi: 10.1016/j.enpol.2008.02.014
17 ZHANG H X , CAO Y J , ZHANG Y , et al. Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data[J]. Applied Energy, 2018, 216, 172- 182.
doi: 10.1016/j.apenergy.2018.02.094
18 姜文玲, 王勃, 汪宁渤, 等. 多时空尺度下大型风电基地出力特性研究[J]. 电网技术, 2017, 41 (2): 493- 499.
JIANG Wenling , WANG Bo , WANG Ningbo , et al. Research on power output characteristics of large-scale wind power base in multiple temporal and spatial scales[J]. Power System Technology, 2017, 41 (2): 493- 499.
19 李璐, 郑亚先, 陈长升, 等. 风电的波动成本计算及应用研究[J]. 中国电机工程学报, 2016, 36 (19): 5155- 5163.
LI Lu , ZHENG Yaxian , CHEN Changsheng , et al. Calculation of wind power variation costs and its application research[J]. Proceedings of the CSEE, 2016, 36 (19): 5155- 5163.
20 MONFORTI F , HULD T , BÓDIS K , et al. Assessing complementarity of wind and solar resources for energy production in Italy: a Monte Carlo approach[J]. Renewable Energy, 2014, 63 (1): 576- 586.
21 於益军, 雷为民, 单茂华, 等. 风光储联合发电监控系统功能设计与应用[J]. 电力系统自动化, 2012, 36 (20): 32- 38.
YU Yijun , LEI Weimin , SHAN Maohua , et al. Design and application of supervision and control system for wind-photovoltaic-battery power plants[J]. Automation of Electric Power Systems, 2012, 36 (20): 32- 38.
22 李剑楠, 乔颖, 鲁宗相, 等. 多时空尺度风电统计特性评价指标体系及其应用[J]. 中国电机工程学报, 2013, 33 (13): 53- 61.
LI Jiannan , QIAO Ying , LU Zongxiang , et al. An evaluation index system for wind power statistical characteristics in multiple spatial and temporal scales and its application[J]. Proceedings of the CSEE, 2013, 33 (13): 53- 61.
23 叶林, 屈晓旭, 么艳香, 等. 风光水多能互补发电系统日内时间尺度运行特性分析[J]. 电力系统自动化, 2018, 42 (4): 158- 164.
YE Lin , QU Xiaoxu , YAO Yanxiang , et al. Analysis on intraday operation characteristics of hybrid wind-solar-hydro power generation system[J]. Automation of Electric Power Systems, 2018, 42 (4): 158- 164.
24 ZHANG H , CAO Y , ZHANG Y , et al. Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data[J]. Applied Energy, 2018, 216, 172- 182.
25 HAN J , KAMBER M , PEI J . Data mining: concepts and techniques[M]. Boston, USA: Morgan Kaufmann, 2012.
[1] HE Si-yan1, LI Peng2, LIU Cheng-yu2, WU Xue-qian2, CHEN Qi-jun3. Refining of the membership function in cross fuzzy entropy and its influence [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(1): 63-68.
[2] LI Zhenbo1, ZHU Shuqian2. Resilient static output feedback stabilization for
controlled positive time-delay systems
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(3): 46-51.
[3] LI Liping1, YANG Jing2, LIU Changchun1, LIU Chengyu1, ZHANG Qingguang1, LI Ke1. The effect of re-sampling on spectral analysis of pulse interval series [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(2): 102-106.
[4] LIU Cheng-Yu, YANG Jing, LI Bin, SUN Chu-Ran, LIU Chang-Chun. Analysis of pulse transit time variability based on LZ complexity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(6): 58-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Dongzhi, ZHANG Jifeng, ZHAO Pengfei. Parallel implementing probabilistic spreading algorithm using MapReduce programming mode[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 22 -28 .
[2] HUANG Jinchao. A new method for muti-objects image segmentation based on faster region proposal networks[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 20 -26 .
[3] TANG Qingshun, JIN Lu, LI Guodong, WU Chunfu. Robotic manipulators tracking control based on adaptive terminal sliding mode controller[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 45 -53 .
[4] ZHANG Jianming, LIU Quansheng, TANG Zhicheng, ZHAN Ting, JIANG Yalong. New peak shear strength criterion with inclusion of shear action history[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 77 -81 .
[5] XIAO Qiao, PEI Jihong, WANG Lixia, GONG Zhicheng. Ship detection in remote sensing image based on the fuzzy fusion of multi-channel Gabor filtering[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 29 -35 .
[6] MA Xiangming, SUN Xia, ZHANG Qiang. Construction and analysis on typical working cycle of wheel loader[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 82 -87 .
[7] LIANG Zehua, CUI Yaodong, ZHANG Yu. The one-dimensional cutting stock problem with sequence-dependent cut losses[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 75 -80 .
[8] WU Shufang, XU Jianmin. Evaluation of microblog users' credibility based on HITS algorithm[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 7 -12 .
[9] DAI Shiyu, LIU Shuqin. Estimation of speed and acceleration of the Maglev platform by state observer[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 114 -120 .
[10] ZHONG Zhiyan, WEN Zhiqiang, ZHANG Xiaoyun, YE Degang. Neighborhood similarity descriptor used in halftone image[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 58 -64 .