JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2018, Vol. 48 ›› Issue (3): 120-126.doi: 10.6040/j.issn.1672-3961.0.2017.407
Previous Articles Next Articles
SHEN Ji, MA Zhiqiang*, LI Tuya, ZHANG Li
CLC Number:
[1] NASUKAWA T, YI J. Sentiment analysis:capturing favorability using natural language processing[C] //International Conference on Knowledge Capture. New York, NY, USA: ACM Press, 2003:70-77. [2] AGARWAL B, PORIA S, MITTAL N, et al. Concept-level sentiment analysis with dependency-based semantic parsing: a novel approach[J]. Cognitive Computation, 2015, 7(4):487-499. [3] 周咏梅, 阳爱民, 林江豪. 中文微博情感词典构建方法[J]. 山东大学学报(工学版), 2014, 44(3):36-40. ZHOU Yongmei, YANG Aimin, LIN Jianghao. A method of building Chinese microblog sentiment lexicon[J].Journal of Shandong University(Engineering Science), 2014, 44(3):36-40. [4] 徐晓丹, 段正杰, 陈中育. 基于扩展情感词典及特征加权的情感挖掘方法[J]. 山东大学学报(工学版), 2014(6):15-18. XU Xiaodan, DUAN Zhengjie, CHEN Zhongyu. The sentiment mining method based on extended sentiment dictionary and integrated features[J]. Journal of Shandong University(Engineering Science), 2014(6):15-18. [5] 周咏梅, 杨佳能, 阳爱民. 面向文本情感分析的中文情感词典构建方法[J]. 山东大学学报(工学版), 2013(6):27-33. ZHOU Yongmei, YANG Jianeng, YANG Aimin. A method on building Chinese sentiment lexicon for text sentimentanalysis[J].Journal of Shandong University(Engineering Science), 2013(6):27-33. [6] 周哲, 商琳. 一种基于动态词典和三支决策的情感分析方法[J]. 山东大学学报(工学版), 2015, 45(1):19-23. ZHOU Zhe, SHANG Lin. A sentiment analysis method based on dynamic lexicon and three-way decision[J]. Journal of Shandong University(Engineering Science), 2015, 45(1):19-23. [7] LIN C, HE Y. Joint sentiment/topic model for sentiment analysis[C] // ACM Conference on Information and Knowledge Management. New York, NY, USA:ACM Press, 2009:375-384. [8] 卢玲, 王越, 杨武. 一种基于朴素贝叶斯的中文评论情感分类方法研究[J]. 山东大学学报(工学版), 2013, 43(6):7-11. LU Ling, WANG Yue, YANG Wu. A method of sentiment classification for Chinese comments based on naive Bayesian[J]. Journal of Shandong University(Engineering Science), 2013, 43(6):7-11. [9] BLEI D, NG A, JORDAN M. Latent dirichlet allocation[J].The Journal of Machine Learning Research, 2003, 3:993-1022. [10] RUBIN T, CHAMBERS A, SMYTH P, et al. Statistical topic models for multi-label document classification[J]. Machine Learning, 2011, 88(1-2):157-208. [11] ANDRZEJEWSKI D, BUTTLER D. Latent topic feedback for information retrieval[C] //Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA:ACM Press, 2011:600-608. [12] LACOSTE-JULIEN S, FEI S, JORDAN M. DiscLDA: Discriminative learning for dimensionality reduction and classification[C] //Proceedings of NIPS Neural Information Processing. Cambridge, MA, USA:MIT Press, 2008:897-904 [13] ZHU J, AHMED A, XING E. MedLDA:maximum margin supervised topic models for regression and classification[C] //International Conference on Machine Learning. New York, USA:ACM Press,2009, 13(4):1257-1264 [14] OSTROWSKI D A. Using latent dirichlet allocation for topic modelling in twitter[C] //IEEE International Conference on Semantic Computing. New York, USA:IEEE Press, 2015:493-497. [15] YAN X, GUO J, LAN Y, et al. A biterm topic model for short exts[C] //Proceedings of the 22nd International Conference on World Wide Web. New York, USA:ACM Press, 2013:1445-1456. [16] HE Y. Latent sentiment model for weakly-supervised crosslingual sentiment classification[J].Advances in Information Retrieval, 2011, 6611:214-225. [17] JO Y, OH A. Aspect and sentiment unification model for online review analysis[C] // Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2011:815-824. [18] LIN C, HE Y. Joint sentiment topic model for sentiment analysis[C] //Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York, USA:ACM Press,2009:375- 384. [19] 张佳明, 王波, 唐浩浩, 等.基于Biterm主题模型的无监督微博情感倾向性分析[J].计算机工程, 2015, 41(7):219-223, 229. ZHANG Jiaming, WANG Bo, TANG Haohao, et al. Unsupervised sentiment orientation analysis on micro-blog based on biterm topic model[J]. Computer Engineering, 2015, 41(7):219-223, 229. [20] 欧阳继红, 刘燕辉, 李熙铭, 等.基于LDA 的多粒度主题情感混合模型[J].电子学报, 2015, 43(9):1875,1880. OUYANG Jihong, LIU Yanhui, LI Ximing, et al. Multi-grain sentiment/topic model based on LDA[J]. Acta Electronica Sinica, 2015, 43(9):1875-1880. [21] 郝洁, 谢珺, 苏婧琼, 等. 基于词加权LDA算法的无监督情感分类[J].智能系统学报,2016,11(4):539-545. HAO Jie, XIE Jun, SU Jingqiong, et al. An unsupervised approach for sentiment classification based on weighted latent dirichlet allocation[J]. CAAI Transactions on Intelligent Systems, 2016, 11(4):539-545. [22] 孙艳, 周学广, 付伟.等.基于主题情感混合模型的无监督文本情感分析[J].北京大学学报(自然科学版),2013, 49(1):102-108. SUN Yan, ZHOU Xueguang, FU Wei. Unsupervised topic and sentiment unification model for sentiment analysis[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(1):102-108. |
[1] | YAN Yingying, HUANG Ruizhang, WANG Rui, MA Can, LIU Bowei, HUANG Ting. A document understanding method for short texts by auxiliary long documents [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 67-74. |
[2] | ZHOU Zhe, SHANG Lin. A sentiment analysis method based on dynamic lexicon and three-way decision [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(1): 19-23. |
[3] | LU Wenyang, XU Jiayi, YANG Yubin. LDA-based link prediction in social network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 26-31. |
[4] | ZHOU Yongmei1, YANG Aimin1, LIN Jianghao2. A method of building Chinese microblog sentiment lexicon [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(3): 36-40. |
[5] | WEI Wei, ZHANG Yanning. Pose estimation based on semi-supervised latent Dirichlet allocation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(3): 17-22. |
[6] | CHEN Bin, CHEN Song-Can, PAN Zhi-Song, LI Bin. Survey of outlier detection technologies [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(6): 13-23. |
|