JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2018, Vol. 48 ›› Issue (3): 48-53.doi: 10.6040/j.issn.1672-3961.0.2017.434
Previous Articles Next Articles
ZHANG Peirui, YANG Yan*, XING Huanlai, YU Xiuying
CLC Number:
[1] BICKEL S, SCHEFFER T. Multi-view clustering[C] //Proceedings of the 4th IEEE International Conference on Data Mining. New Jersey, USA: IEEE, 2004, 4: 19-26. [2] KUMAR A, DAUME H. A co-training approach for multi-view spectral clustering[C] //Proceedings of the 28th International Conference on Machine Learning. Washington, USA: ICML, 2011: 393-400. [3] TZOTZIS G, LIKAS A. Kernel-based weighted multi-view clustering[C] //Proceedings of the 12th IEEE International Conference on Data Mining. New Jersey, USA: IEEE, 2012: 675-684. [4] LIU Jialu, WANG Chi, GAO Jiawei, et al. Multi-view clustering via joint nonnegative matrix factorization[C] //Proceedings of the 2013 SIAM International Conference on Data Mining. Texas, USA: ResearchGate, 2013: 252-260. [5] WANG Dong, YIN Qiyue, HE Ran, et al. Multi-view clustering via structured low-rank representation[C] //Proceedings of the 24th ACM International Conference on Information and Knowledge Management. Melbourne, Australia: ACM, 2015: 1911-1914. [6] ZHAO Yang, DOU Yong, LIU Xinwang, et al. A novel multi-view clustering method via low-rank and matrix-induced regularization[J]. Neurocomputing, 2016, 216: 342-350. [7] 邓强, 杨燕, 王浩. 一种改进的多视图聚类集成算法[J]. 计算机科学, 2017, 44(1): 65-70. DENG Qiang, YANG Yan, WANG Hao. Improved multi-view clustering ensemble algorithm[J]. Computer Science, 2017, 44(1): 65-70. [8] CAN F, DROCHAK N D I. Incremental clustering for dynamic document databases[C] //IEEE International Symposium on Applied Computing. New Jersey, USA: IEEE, 1990: 61-67. [9] NG R T, HAN J. CLARANS: A method for clustering objects for spatial data mining[J]. IEEE Transactions on Knowledge and Data Engineering, 2002, 14(5): 1003-1016. [10] HORE P, HALL L O, Goldgof D B, et al. Online fuzzy C means[C] //Fuzzy Information Processing Society. New Jersey, USA: IEEE, 2008: 1-5. [11] HORE P, HALL L O, GOLDGOF D B. Single pass fuzzy C means[C] //IEEE International Conference on Fuzzy Systems. London, UK: IEEE, 2007: 1-7. [12] 李滔, 王士同. 适合大规模数据集的增量式模糊聚类算法[J]. 智能系统学报, 2016, 11(2):188-199. LI Tao, WANG Shitong. Incremental fuzzy(c+p)—means clustering for large data[J]. CAAI Transactions on Intelligent Systems, 2016, 11(2): 188-199. [13] 张佩瑞. 基于多核学习的多视图增量聚类模型研究[D]. 成都: 西南交通大学, 2017. ZHANG Peirui. Research on multi-view incremental clustering based on multiple kernel learning[D]. Chengdu: Southwest Jiaotong University, 2017. [14] 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012. [15] 袁瑛. 基于正则化的多核学习方法及应用[D]. 广州: 华南理工大学, 2016. YUAN Ying. Multiple kernel learning with regularization and its application[D]. Guangzhou: South China University of Technology, 2016. [16] TZORTZIS G F, LIKAS A C. The global kernel K-means algorithm for clustering in feature space[J]. IEEE Transactions on Neural Networks, 2009, 20(7): 1181-1194. [17] 邓强. 多视图子空间聚类集成方法研究及分布式实现[D]. 成都: 西南交通大学, 2016. DENG Qiang. Research on multi-view subspace clustering ensemble and its distributed implementation[D]. Chengdu: Southwest Jiaotong University, 2016. [18] 杨燕, 靳蕃, KAMEL M. 聚类有效性评价综述[J]. 计算机应用研究, 2008(6):1630-1632, 1638. YANG Yan, JIN Fan, KAMEL M. Survey of clustering validity evaluation[J]. Application Research of Computers, 2008(6): 1630-1632, 1638. [19] 刘晓勇. 一种基于树核函数的半监督关系抽取方法研究[J]. 山东大学学报(工学版), 2015, 45(2): 22-26. LIU Xiaoyong. A semi-supervised method based on tree kernel for relationship extraction[J]. Journal of Shandong University(Engineering Science), 2015, 45(2):22-26. [20] GU Quanquan, ZHOU Jie. Learning the shared subspace for multi-task clustering and transductive transfer classification[C] //Proceedings of the 9th IEEE International Conference on Data Mining. Florida, USA: IEEE, 2009: 159-168. [21] DENG Zhaohong, CHOI K S, CHUNG Fulai, et al. Enhanced soft subspace clustering integrating within-cluster and between-cluster information[J]. Pattern Recognition, 2010, 43(3): 767-781. |
[1] | ZHOU Kai, YUAN Changan, QIN Xiao, ZHENG Yan, FENG Wenduo. Face recognition based on kernel Bayesian compressive sensing [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 74-78. |
[2] | ZHAI Junhai, ZHANG Sufang, HU Wenxiang, WANG Xizhao. Radial basis function extreme learning machine based on core sets [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 1-5. |
[3] | XU Pingan, TANG Yan, SHI Jiaokai, ZHANG Huirong. K-Means clustering algorithm based on the Schrödinger equation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(1): 34-41. |
[4] | HAO Qingbo, MU Shaomin, YIN Chuanhuan, CHANG Tengteng, CUI Wenbin. An algorithm of fast local support vector machine based on clustering [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(1): 13-18. |
[5] | GUO Hui-ling, WANG Shi-tong*, YAN Xiao-bo. A novel method for face recognition based on generalized rotation invariant kernel [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 71-79. |
[6] | ZHANG Si-yi1,2, WANG Shi-tong1*. Kernelized spatial depth function for the feature extraction method [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(3): 45-51. |
[7] | WANG Sheng-chun,HAN Jie,LI Zhi-nong,LI Jian-feng . The fault diagnosis method based on ambiguity domain and support vector machine [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 116-120 . |
|