JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2018, Vol. 48 ›› Issue (3): 34-39.doi: 10.6040/j.issn.1672-3961.0.2017.433

Previous Articles     Next Articles

Chinese financial news classification method based on convolutional neural network

XIE Zhifeng1,2, WU Jiaping1, MA Lizhuang2,3   

  1. 1. Department of Film and Television Engineering, Shanghai University, Shanghai 200072, China;
    2. Shanghai Engineering Research Center of Motion Picture Special Effects, Shanghai 200072, China;
    3. Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
  • Received:2017-08-29 Online:2018-06-20 Published:2017-08-29

Abstract: In order to complete the task of financial news classification, a new method based on convolutional neural network for the classification of Chinese financial news was presented. A simple CNN was trained with one layer of convolution on top of word vectors obtained from an unsupervised neural language model. These vectors were trained on a large number of financial news corpus. Compared with the traditional methods, the network model based on convolutional neural network was simple in structure, which could show excellent performance by using small sample set. The method not only could solve the Chinese financial news classification problem effectively, but also prove the effectiveness of convolutional neural network in dealing with problems of text classification fully.

Key words: financial news, convolutional neural network, natural language processing, deep learning, word vector, text classification

CLC Number: 

  • TP391.1
[1] WANG S, MANNING C D. Baselines and bigrams: Simple, good sentiment and topic classification[C] //Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Jeju Island, Korea: ACL, 2012: 90-94.
[2] KRIZHEVSKY A, SUTSKEVER I, HINTON G. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 60(2): 1097-1105.
[3] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C] //Proceedings of Conference on Computer Vision and Pattern Recognition(CVPR). Boston, USA: IEEE, 2015: 1-9.
[4] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2017-06-20]. https://arxiv.org/pdf/1409.1556v6.pdf.
[5] 徐姗姗, 刘应安, 徐昇. 基于卷积神经网络的木材缺陷识别[J]. 山东大学学报(工学版), 2013, 43(2): 23-28. XU Shanshan, LIU Ying'an, XU Sheng. Wood defects recognition based on the convolutional neural network[J]. Journal of Shandong University(Engineering Science), 2013, 43(2): 23-28.
[6] 奚雪峰, 周国栋. 面向自然语言处理的深度学习研究[J]. 自动化学报, 2016, 42(10): 1445-1565. XI Xuefeng, ZHOU Guodong. A survey on deep learning for natural language processin[J]. Acta Automatica Sinica, 2016, 42(10): 1445-1565.
[7] BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. The Journal of Machine Learning Research, 2006, 3(6):1137-1155.
[8] FISCHER A, IGEL C. An introduction to restricted Boltzmann machines[C] //Iberoamerican Congress on Pattern Recognition. Berlin, Germany: Springer, 2012: 14-36.
[9] MNIH A, HINTON G. A scalable hierarchical distributed language model[C] //International Conference on Neural Information Processing Systems. Vancouver, Canada: NIPS, 2008: 1081-1088.
[10] SOCHER R, PENNINGTON J, HUANG E H, et al. Semi-supervised recursive autoencoders for predicting sentiment distributions[C] //Proceedings of the Conference on Empirical Methods in Natural Language Processing. Edinburgh, Britain: ACL, 2011: 151-161.
[11] COLLOBERT R, WESTON J,BOTTOU L, et al. Natural language processing(almost)from scratch[J]. The Journal of Machine Learning Rearch, 2011, 12(1): 2493-2537.
[12] MIOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C] //Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, USA: NIPS, 2013: 3111-3119.
[13] ZHOU Shusen, CHEN Qingcai, WANG Xiaolong. Convolutional active deep learning method for semi-supervised sentiment classification[J]. Necuro computing, 2013, 120(10): 536-546.
[14] JOHNSON R, ZHANG T. Effective use of word order for text categorization with convolutional neural networks[J]. Eprint Arxiv, 2014:1412.
[15] BLUNSOM P, GREFENSTEEN E, KALCHBRENNER N. et al. Aconovolutional neural network for modelling sentences[C] //Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, USA: ACL, 2014: 655-665.
[16] KIM Y. Convolutional neural networks for sentence classification[C] //Proceedings of the EMNLP. Doha, Qatar: Association for Computational Linguistics, 2014: 1746-1751.
[17] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. [2017-06-20]. https://arxiv.org/pdf/1301.3781v3.pdf
[18] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[EB/OL]. [2017-06-20]. https://arxiv.org/pdf/1207.0580v1.pdf.
[19] 唐明,朱磊,邹显春. 基于Word2vec的一种文档向量表示[J]. 计算机科学,2016, 43(6): 264-269. TANG Ming, ZHU Lei, ZOU Xianchun, et al. Documenl vector representation based on Word2vec[J]. Computer Science, 2016, 43(6): 264-269.
[20] 陈钊,徐睿峰,桂林,等. 结合卷积神经网络和词语情感序列特征的中文情感分析[J]. 中文信息学报, 2015, 29(6): 172-178. CHEN Zhao, XU Ruifeng, GUI Lin, et al. Combining convolutional neural networks and word sentiment sequence features for Chinese text sentiment analysis[J]. Processing of Journal of chinese Imformation, 2015, 29(6): 172-178.
[21] ZEILER M. ADADELTA: An adaptive learning rate method[EB/OL]. [2017-06-20]. https://arxiv.org/pdf/1212.5701v1.pdf.
[22] BOTTOU L. Large-scale machine learning with stochastic gradient descent[C] //Proceedings of COMPATAT’2010. Berlin, Germany: Springer, 2010: 177-186.
[23] SOCHER B, HUVAL C, MANNING A. Semantic compositionality through recursive matrix-vector spaces[C] //Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Jeju Island, Korea: ACL, 2012: 1201-1211.
[24] DONG L, LIU S J, ZHOU M, et al. A statistical parsing framework for sentiment classification[J]. Computational Linguistic, 2015, 41(2): 293-336.
[25] NAKAGAWA K, INUI S, KUROHASHI S. Dependency tree-based sentiment classification using CRFs with hidden variables[C] //The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Los Angeles, USA: ACL, 2010: 786-794.
[1] ZHANG Pu, LIU Chang, WANG Yong. Suggestion sentence classification model based on feature fusion and ensemble learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(5): 47-54.
[2] LIANG Mengmeng, ZHOU Tao, XIA Yong, ZHANG Feifei, YANG Jian. Lung tumor images recognition based on PSO-ConvK convolutional neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(5): 77-84.
[3] LI Yuxin, PU Yuanyuan, XU Dan, QIAN Wenhua, LIU Hejuan. Image aesthetic quality evaluation based on embedded fine-tune deep CNN [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 60-66.
[4] ZHAO Yanxia, WANG Xizhao. Multipurpose zero watermarking algorithm for color image based on SVD and DCNN [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 25-33.
[5] HE Zhengyi, ZENG Xianhua, GUO Jiang. An ensemble method with convolutional neural network and deep belief network for gait recognition and simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 88-95.
[6] TANG Leshuang, TIAN Guohui, HUANG Bin. An object fusion recognition algorithm based on DSmT [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 50-56.
[7] ZHOU Funa, GAO Yulin, WANG Jiayu, WEN Chenglin. Early diagnosis and life prognosis for slowlyvarying fault based on deep learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 30-37.
[8] HE Zhengyi, ZENG Xianhua, QU Shengwei, WU Zhilong. The time series prediction model based on integrated deep learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 40-47.
[9] ZHENG Yi, ZHU Chengzhang. A prediction method of atmospheric PM2.5 based on DBNs [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 19-25.
[10] XU Shan-shan, LIU Ying-an*, XU Sheng. Wood defects recognition based on the convolutional neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(2): 23-28.
[11] ZHANG Yong-jun1, LIU Jin-ling2, YU Chang-hui3. A spam short message classification method based on word contribution [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 87-90.
[12] DONG Ai-Feng, DIAO Ge-Ji, SCHOMMER Christoph. A fingerprint engine for author profiling [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 27-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!