JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2018, Vol. 48 ›› Issue (2): 72-80.doi: 10.6040/j.issn.1672-3961.0.2017.610

Previous Articles     Next Articles

A fault-tolerant control architecture for active magnetic bearing based on dual core processor

CHENG Xin1,2, LIU Han1,2*, WANG Bo1,2, LIANG Dian1,2, CHEN Qiang1,2   

  1. 1. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China;
    2. Hubei Maglev Engineering Technology Research Center, Wuhan 430070, Hubei, China
  • Received:2017-09-14 Online:2018-04-20 Published:2017-09-14

Abstract: To satisfy the fault diagnosis of multi degree of freedom magnetic bearing system and the real-time control requirements, an ARM+DSP based heterogeneous dual core processor architecture was proposed. In hardware configuration, DSP was used as the fault monitoring to execute multiple loops, ARM was used as the main controller to implement the rotor position control algorithm, and the fault-tolerant controller was implemented according to the fault reconfiguration of the controller. In software architecture, a method of information interaction, task allocation and execution based on dual core processor was proposed, and bidirectional interrupt was designed to coordinate the execution sequence between control and monitoring code. In the experiment, the system fault diagnosis and real time fault tolerant control needed only 1.8 ms. Experiment results showed the effectiveness of the proposed architecture.

Key words: fault tolerant control, active magnetic bearing, shared data interaction, dual core processor, fault diagnosis, dual-direction interrupted communication

CLC Number: 

  • TP277
[1] 李媛媛,朱熀秋,朱利东,等. 磁悬浮轴承发展及关键技术研究现状[J]. 微机电,2014,47(6):69-73. LI Yuanyuan, ZHU Huangqiu, ZHU Lidong, et al. Development and key technology research status of magnetic suspension bearing[J]. Microelectrical Mechanical System, 2014, 47(6):69-73.
[2] MASLEN E H, MEEKER D C. Fault tolerance of magnetic bearings by generalized bias current linearization[J]. IEEE Transactions on Magnetics, 1995, 31(3):2304-2314.
[3] MEEKER D C. Optimal solutions to the inverse problem in quadratic magnetic actuators[D]. Charlottesville, America: University of Virginia, 1996.
[4] MASLEN E H, SORTORE C K, GILLIES G T, et al. Fault tolerant magnetic bearings[J]. ASME Journal of Engineering for Gas Turbines and Power, 1999, 121(3):504-508.
[5] NA U J, PALAZZOLO A. Optimized realization of fault-tolerant heteropolar magnetic bearings[J]. ASME Journal of Vibration and Acoustics, 2000, 122(3):209-221.
[6] NA U J, PALAZZOLO A, PROVENZA A. Test and theory correlation study for a flexible rotor on fault-tolerant magnetic bearings[J]. ASME Journal of Vibration and Acoustics, 2002, 124(3):359-366.
[7] NA U J, PALAZZOLO A. The fault-tolerant control of magnetic bearings with reduced controller outputs[J]. ASME Journal of Dynamic Systems Measurement and Control, 2001, 123(2):219-224.
[8] NA U J. Fault-tolerant control of heteropolar magnetic bearings[D]. Charlottesville, America: Texas A & M University, 1999.
[9] LI Minghsiu, PALAZZOLO A, KENNY A, et al. Fault-tolerant homopolar magnetic bearings[J]. IEEE Transactions on Magnetics, 2004, 40(5): 3308-3318.
[10] SCHRODER P, CHIPPERFIELD A J, FLEMING P J, et al. Fault tolerant control of active magnetic bearings[J]. IEEE International Symposium on Industrial Electronics, 1998: 573-578.
[11] CHENG X, CHEN Q, ZENG H, et al. Reconfiguration rules for loosely-coupled redundant supporting structure in radial magnetic bearings[J]. International Journal of Applied Electromagnetics and Mechanics, 2016, 51(2):91-106.
[12] CHENG X, LIU H, SONG S, et at. Reconfiguration of tightly-coupled redundant supporting structure in active magnetic bearings under the failures of electromagnetic actuators[J]. International Journal of Applied Electromagnetics and Mechanics, 2017, 54(1):421-432.
[13] CHENG X, WANG B, CHEN Q, et at. A unified design and the current ripple characteristic analysis of digital switching power amplifier in active magnetic-levitated bearings [J]. International Journal of Applied Electromagnetics and Mechanics, 2017, 55(1):1-17.
[14] 吴步洲,孙岩桦,王世琥,等. 径向电磁轴承线圈容错控制研究[J]. 机械工程学报,2005,41(6):157-162. WU Buzhou, SUN Yanhua, WANG Shihu, et al. Research on fault tolerant control of radial electromagnetic bearing coils[J]. Journal of Mechanical Engineering, 2005, 41(6):157-162.
[15] 崔东辉,徐龙祥. 基于坐标变换的径向主动磁轴承容错控制[J]. 控制与决策,2010,25(9):1420-1425. CUI Donghui, XU Longxiang. Fault tolerant control of radial active magnetic bearing based on coordinate transformation[J]. Control and Decision, 2010, 25(9):1420-1425.
[16] 纪历,徐龙祥,唐文斌. 磁悬浮轴承数字控制器故障诊断与处理[J]. 中国机械工程,2010,21(3):289-295. JI Li, XU Longxiang, TANG Wenbin. Fault diagnosis and treatment for AMB digital controller[J]. China Mechanical Engineering, 2010, 21(3):289-295.
[17] 周祖德,库少平,胡业发. 电磁轴承多传感器故障诊断研究[J]. 中国机械工程,2005,16(1):57-59. ZHOU Zude, KUI Shaoping, HU Yefa. Study on fault diagnosis of the multi-sensors of magnetic bearings[J]. China Mechanical Engineering, 2005, 16(1):57-59.
[18] 程鑫,吴华春,胡业发,等. 并行多处理器运动控制系统中的分布式存储机制[J]. 中国机械工程,2014,25(8):1041-1046. CHENG Xin, WU Huachun, HU Yefa, et al. Distributed memory mechanism in parallel multiprocessor motion control system[J]. China Mechanical Engineering, 2014, 25(8):1041-1046.
[19] CHENG X, WU H C. High-performance real-time bus in parallel processing system[J]. Applied Mechanics and Materials, 2013, 278-280(5):1043-1046.
[20] 程鑫. 多轴超精密同步运动控制系统中的数据交互机制[J]. 机械工程学报,2014,50(17):149-156. CHENG Xin. Data interchange mechanism in multi-axis ultra-precise synchronous motion control system[J]. Journal of Mechanical Engineering, 2014, 50(17):149-156.
[21] 程鑫,吴华春. 基于DSM的可重构多DSP并行处理架构 [J]. 华中科技大学学报(自然科学版),2012,40(S2):83-86. CHENG Xin, WU Huachun. Reconfigurable multi-DSP parallel computing architecture based on DSM [J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2012, 40(S2):83-86.
[22] 程鑫,周云飞. 针对多轴精密同步运动控制的并行计算架构设计[J]. 中国机械工程,2011,22(18):2156-2162. CHENG Xin, ZHOU Yunfei. Design of parallel computing architecture for multi-axis ultra-precise synchronous motion control[J]. Journal of Mechanical Engineering, 2011, 22(18):2156-2162.
[23] 栾小飞. OMAPL138双核系统的调试方案设计[J]. 单片机与嵌入式系统应用,2012(1):16-19. LUAN Xiaofei. Debugging method based on OMAPL138 dual-core system[J]. Application of Single Chip Computer and Embedded System, 2012(1):16-19.
[24] 郭盟,尹志辉,钱世俊. 基于OMAPL138的双核通信研究及应用[J]. 工业控制计算机,2015,28(11):46-49. GUO Meng, YIN Zhihui, QIAN Shijun. Research and application of dual-core communication based on OMAPL138[J]. Industrial Control Computer, 2015, 28(11):46-49.
[25] 范林涛,王骜. 基于OMAPL138平台的串口LCD Linux驱动设计[J]. 计算机与网络,2015, 41(14):42-44. FAN Lintao, WANG Ao. Design and implementation of serial LCD linux driver based on OMAPL138 platform [J]. Computer and Network, 2015, 41(14):42-44.
[1] CHENG Xin, ZHANG Lin, HU Yefa, CHEN Qiang, LIANG Dian. Fault diagnosis of electromagnetic coil in active magnetic bearing based on current characteristics [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 94-101.
[2] TIAN Jing, LI Hongwei, CHEN Rui, YU Wentao. Structural optimization and finite element analysis of a type of axial AMBs [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 107-113.
[3] WANG Xiuqing, ZENG Hui, XIE Fei, LYU Feng. Fault diagnosis for manipulators based on Spiking neural networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 15-21.
[4] SONG Yang, ZHONG Maiying. Fault isolability analysis based on improved distance similarity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 103-109.
[5] LI Wei, WANG Kehong, CAO Huichao. A fault filtering method based on an improved extended state filter for nonlinear system [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 7-14.
[6] MAO Haijie, LI Wei, WANG Kehong, FENG Xiaolin. Sensor fault tolerant switch strategy for multi-motor synchronous system based on ADRC [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 64-70.
[7] HUANG Chengkai, YANG Hao, JIANG Bin, CHENG Shuyao. Fault tolerant cooperative control for a class of complex networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 203-209.
[8] QIU Lu, YE Yinzhong, JIANG Chundi. Fault diagnostic method for micro-grid based on wavelet singularity entropy and SOM neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 118-122.
[9] XIE Xiaolong, JIANG Bin, LIU Jianwei, JIANG Yinhang. Fault diagnosis and fault tolerant control based on sliding mode observer for speed sensor in asynchronous motor [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 210-214.
[10] WANG Mengyuan, ZHANG Xiong, MA Liang, PENG Kaixiang. Fault diagnosis for industrial processes based on causal topological graph [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 187-194.
[11] SUN Yuancheng, YAO Lina. Fault diagnosis and fault tolerant control for non-Gaussian uncertain singular stochastic distribution control systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 238-245.
[12] LI Minghu, LI Gang, ZHONG Maiying. Application of dynamic kernel principal component analysis in unmanned aerial vehicle fault diagnosis [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 215-222.
[13] LIU Zhuo, WANG Tianzhen, TANG Tianhao, FENG Yefan, YAO Junqi, GAO Diju. A fault diagnosis and fault-tolerant control strategy for multilevel inverter [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 229-237.
[14] WU Jianping, JIANG Bin, LIU Jianwei. Fault diagnosis of asynchronous motor based on wavelet packet entropy and wavelet neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 223-228.
[15] CUI Yang, ZHANG Ke, JIANG Bin. Fault estimation design for linear multi-agent systems with switching topologies [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 263-270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!