JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2018, Vol. 48 ›› Issue (1): 57-64.doi: 10.6040/j.issn.1672-3961.0.2017.504

Previous Articles     Next Articles

Performance of W6Mo5Cr4V2 laser cladding on 40Cr curved substrate

XU Mingsan1,3, WANG Tao1,3, LI Jianfeng2*, DAI Tengyun1,3   

  1. 1. School of Mechanical &
    Automotive Engineering, Fujian University of Technology, Fuzhou 350118, China;
    2. School of Mechanical Engineering, Shandong University, Jinan 250100, China;
    3. Advanced Manufacturing Productivity Promotion Center, Fujian University of Technology, Fuzhou 350118, China
  • Received:2017-10-12 Online:2018-02-20 Published:2017-10-12

Abstract: In order to realize the additive manufactured on the blade edges of die-cutting machines by using laser cladding technology,orthogonal tests of multi-pass laser cladding with high-speed steel powder W6Mo5Cr4V2 on the curved substrate 40 Cr were carried out. Process parameters which included the radius of curvature,cladding trajectory and the lap-over ratio, etc. were taken as the influencing factors. The residual stress, micro-hardness and microstructure of the cladding layer were analyzed. The results showed that the flow of protective gas had a significant effect on the residual stress. The minimum residual stresses were obtained under the laser power of 1 800 W,the scanning velocity of 10 m/s,the protective gas flow of 400 g/min,the curvature radius of 60 mm and the lap-over ratio of 30% with a circumferential cladding direction. The crystal morphology from the top of the cladding layer to the bonding zone was developed from the plane crystal to the dendrite. Besides, no defects in the cladding layer were observed and a metallurgical bonding between powders and substrate was achieved. In addition, the micro-hardness value experienced a stair-step increase from the substrate to the top of cladding layer. The average micro-hardness was more than 60 HRC, which could meet the hardness requirements of blade edges on die-cutting machines.

Key words: laser cladding, radius of curvature, micro-hardness, residual stress, microstructure

CLC Number: 

  • TG115
[1] 江吉彬,练国富,许明三. 激光熔覆技术研究现状及趋势[J]. 重庆理工大学学报(自然科学),2015,29(01):27-36,46. JIANG Jibin, LIAN Guofu, XU Mingsan. Research on status and trend of laser cladding[J]. Journal of Chongqing University of Technology(Natural Science), 2015, 29(01):27-36,46.
[2] 辛晨光. 激光制造技术的应用与展望[J]. 现代制造工程,2012(9):130-134. XIN Chenguang. Application and prospect of laser manufacture technolog[J]. Modern Manufacturing Engineering, 2012(9):130-134.
[3] 刘立峰,杨洗陈. 基于逆向工程的激光再制造机器人路径规划[J]. 中国激光,2011,38(7):142-145. LIU Lifeng, YANG Xichen. Path planning of laser remanufacturing robot based on reverse engineering[J]. Chinese Journal of Lasers, 2011, 38(7):142-145.
[4] 韩玉勇,鲁俊杰,李剑峰,等. 基于激光熔覆的车床主轴再制造[J]. 中国表面工程,2015,28(6):147-153. HAN Yuyong, LU Junjie, LI Jianfeng, et al. Lathe spindle remanufacturing based on laser cladding technology[J]. China Surface Engineering, 2015, 28(6):147-153.
[5] 黄浩. 40Cr表面激光熔覆硬质涂层及其应用研究[D].秦皇岛:燕山大学,2016. HUANG Hao. The research of laser cladding hard coating on the surface of 40Cr and its application[D]. Qinhuangdao: Yanshan University, 2016.
[6] 张旭,刘洪喜,张晓伟,等. 40Cr钢表面激光熔覆金属陶瓷复合涂层的组织和性能[J]. 金属热处理,2015,40(5):39-44. ZHANG Xu, LIU Hongxi, ZHANG Xiaowei, et al. Microstructure and properties of laser clad metal ceramic composite coating on 40Cr steel[J]. Heat Treatment of Metals, 2015, 40(5):39-44.
[7] 张晓伟,蒋业华,刘洪喜,等. 40Cr刀体3D激光熔覆层优化及其显微组织结构[J]. 应用激光,2013,33(4):408-411. ZHANG Xiaowei, JIANG Yehua, LIU Hongxi, et al. Microstructure and optimization of 3D laser cladding layer on 40Cr cutting tools[J]. Applied Laser, 2013, 33(04):408-411.
[8] 李闯,刘洪喜,张晓伟,等. 40Cr刀具钢表面激光熔覆钴基碳化物复合涂层的组织与性能[J]. 中国激光,2015,42(11):53-58. LI Chuang, LIU Hongxi, ZHANG Xiaowei, et al. Microstructure and property of Co-based carbide composite coating fabricated by laser cladding on 40Cr tool steel surface[J]. Chinese Journal of Lasers, 2015, 42(11):53-58.
[9] 刘洪喜,冷凝,张晓伟,等. 40Cr刀具表面激光熔覆WC/Co50复合涂层的微观组织及其磨损性能[J]. 红外与激光工程,2016,45(1):190-195. LIU Hongxi, LENG Ning, ZHANG Xiaowei, et al. Microstructure and wear behavior of WC/Co50 composite coatings on 40Cr cutting tool surface prepared by laser cladding[J]. Infrared and Laser Engineering, 2016, 45(1):190-195.
[10] 任建华,杨晓良,黄浩,等. 40Cr模具钢激光熔覆层组织及性能分析[J]. 模具工业,2017,43(7):59-61+64. REN Jianhua, YANG Xiaoliang, HUANG Hao, et al. Microstructure and properties analysis of laser cladding layer on 40Cr die steel[J]. Die & Mould Industry, 2017, 43(7):59-61+64.
[11] 李养良,王洪涛,王利,等. 40Cr表面激光熔覆镍基合金的组织研究[J]. 应用激光,2011,31(5):396-399. LI Yangliang, WANG Hongtao, WANG Li, et al. Mirostructure and properites of surface laser cladding Ni-base alloy on 40Cr [J]. Applied Laser, 2011, 31(5):396-399.
[12] 姜付兵,石世宏,石拓,等. 基于光内送粉技术的激光加工机器人曲面熔覆试验研究[J]. 中国激光,2015,42(8):114-120. JIANG Fubing, SHI Shihong, SHI Tuo, et al. Experimental research on curved surface cladding based on robotic technology and inside-laser powder feeding technology[J]. Chinese Journal of Lasers, 2015, 42(8):114-120.
[13] RIPOLL M R, OJALA N, KATSICH C, et al. The role of niobium in improving toughness and corrosion resistance of high speed steel laser hardfacings[J]. In Materials & Design, 2016(99):509-520.
[14] GONZALEZ F, VAL J, COMESANA R, et al. Laser cladding of phosphor bronze[J]. Surface & Coatings Technology, 2017(313):248-254.
[15] BAINO F, MONTEALEGRE M A, ORLYGSSON G, et al. Bioactive glass coatings fabricated by laser cladding on ceramic acetabular cups: a proof-of-conacept study[J]. J Mater Sci, 2017(52):9115-9128.
[16] KAIERLE S, OVERMEYER L, ALFRED I, et al. Single-crystal turbine blade tip repair by laser cladding and remelting[J]. CIRP Journal of Manufacturing Scienceand Technology, 2017, 04(001):1-4.
[17] NOWOTNY S, SCHAREK S, BEYER E, et al. Laser beam build-up welding precision in repair, surface cladding, and direct 3D metal deposition[J]. Journal of Thermal Spray Technology, 2007, 16(3):344-348.
[18] 封慧,李剑峰,孙杰. 曲轴轴颈损伤表面的激光熔覆再制造修复[J]. 中国激光,2014,41(8):86-91. FENG Hui, LI Jianfeng, SUN Jie. Study on remanufacturing repair of damaged crank shaft journal surface by laser cladding[J]. Chinese Journal of Lasers, 2014, 41(8):86-91.
[19] 董玲,杨洗陈,张海明,等. 自由曲面破损零件激光再制造修复路径生成[J]. 中国激光,2017,39(7):96-101. DONG Ling, YANG Xichen, ZHANG Haiming, et al. Path generation for repairing damaged parts of free-form surfaces in laser remanufacturing [J]. Chinese Journal of Lasers, 2017, 39(7):96-101.
[20] 许明三,江吉彬,张宁,等. 40Cr基体温度对激光熔覆Cr18Ni8Mo2Si的影响[J]. 福建师范大学学报(自然科学版),2017,33(2):38-43. XU Mingsan, JIANG Jibin, ZHANG Ning, et al. Effects of the substrate temperature on microstructure and properties of laser cladding Cr18Ni8Mo2Si on 40Cr[J]. Journal of Fujian Normal University(Natural Science Edition), 2017, 33(2):38-43.
[21] 许明三,李剑峰,李驊登,等. 激光熔覆粉料和工艺参数对45钢基体与熔覆层结合强度的影响研究[J]. 机械工程学报,2017,53(9):209-216. XU Mingsan, LI Jianfeng, LI Huadeng, et al. Influence on powders and process parameters on bonding shear strength in laser cladding[J]. Journal of Mechanical Engineering, 2017, 53(9):209-216.
[1] SU Chenggong, LIU Yan, WANG Weiqiang, WANG Yuhua. The influence of indentation on the surface residual stress of stainless steel [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(1): 90-96.
[2] LIU Lijun, ZHANG Hongxing, ZHANG Weijie, WANG Gang, QI Meng. The property of die-casting dies of wiper repaired by laser welding with filler wire [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(3): 73-79.
[3] WANG Zhong-qiu1,3, ZHOU Shan2, LI Jian-feng3, SUN Jie3. Simulation and experimental verification of residual stress in hard turning of AISI 52100 using the 2D finite element method [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(1): 109-114.
[4] SUN Yuan, WANG Gui-qing. Monte Carlo simulation of the microstructure evolution of Al-Zn-Mg-(Sc)-(Zr) alloys during the  initial aging stage [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 99-103.
[5] JIANG Yitao1, SUN Jie1*, WANG Zhongqiu1, LI Jianfeng1, DING Hongbo2. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 82-86.
[6] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 92-95.
[7] XUE Qiang,AI Xing,ZHAO Jun,ZHOU Yong-hui,YUAN Xun-liang . Effects of TiC nano-sized particle on the microstructure and properties of Si3N4 composite ceramics [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 69-72 .
[8] ZHAO Guan-lin,ZOU Zeng-da,WANG Xin-Hong,DU Bao-shuai . In situ synthesis of TiC-VC particles reinforced Fe-basedMMC coatings produced by laser cladding [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(2): 6-9 .
[9] LIU Yu-zhen,XU Cheng-qiang . Post-processing of finite element analysis for the 3D microstructure of polycrystalline materials [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(2): 13-17 .
[10] YUAN Dong-ling,DENG Jian-xin,DING Ze-liang,DUAN Zhen-xing . Finite element analysis for the thermal residual stress of gradient CWS ceramic nozzles [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(2): 18-22 .
[11] AWANG Changchun,MIN Guanghui,SukBong Kang . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(5): 13-16 .
[12] SONG Sili,ZOU Zengda,WANG Xinhong,LI Qingming . Study on the microstructures of insitu TiC particle reinforced [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(3): 1-04 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!