JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2018, Vol. 48 ›› Issue (1): 36-41.doi: 10.6040/j.issn.1672-3961.0.2016.408
Previous Articles Next Articles
LIU Jianmei, MA Shuaiqi*
CLC Number:
[1] SHEFFI Y, POWELL W B. An algorithm for the equilibrium assignment problem with random link times[J]. Networks, 1982, 12(2): 191-207. [2] MAHER M. Algorithms for logit-based stochastic user equilibrium assignment[J]. Transportation Research Part B, 1998, 32(8): 539-549. [3] DIAL R B. A probabilistic multipath traffic assignment model which obviates path enumeration[J]. Transportation Research, 1971, 5(2): 83-111. [4] BELL M G. Alternatives to Dial's logit assignment algorithm[J]. Transportation Research Part B, 1995, 29(4): 287-295. [5] CHEN M, ALFA A S. Algorithms for solving Fisk's stochastic traffic assignment model[J]. Transportation Research Part B, 1991, 25(6): 405-412. [6] BEKHOR S, TOLEDO T. Investigating path-based solution algorithms to the stochastic user equilibrium problem[J]. Transportation Research Part B, 2005, 39(3): 279-295. [7] ZHOU B, LI X, HE J. Exploring trust region method for the solution of logit-based stochastic user equilibrium problem[J]. European Journal of Operational Research, 2014, 239(1): 46-57. [8] ZHOU B, BLIEMER M C J, LI X, et al. A modified truncated Newton algorithm for the logit-based stochastic user equilibrium problem[J]. Applied Mathematical Modelling, 2015, 39(18): 5415-5435. [9] CEYLAN H, BELL M G H. Genetic algorithm solution for the stochastic equilibrium transportation networks under congestion[J]. Transportation Research Part B, 2005, 39(2): 169-185. [10] LIU J, MA S, HUANG C, et al. A dimension-reduced method of sensitivity analysis for stochastic user equilibrium assignment model[J]. Applied Mathematical Modelling, 2010, 34(2): 325-333. [11] CONNORS R D, SUMALEE A, WATLING D P. Sensitivity analysis of the variable demand probit stochastic user equilibrium with multiple user-classes[J]. Transportation Research Part B, 2007, 41(6): 593-615. [12] HBAR GERA. Origin-based algorithm for the traffic assignment problem[J]. Transportation Science, 2002, 36(4): 398-417. [13] WEI C, ASAKURA Y. A Bayesian approach to traffic estimation in stochastic user equilibrium networks[J]. Procedia-Social and Behavioral Sciences, 2013, 80(11): 591-607. [14] YU Q, FANG D, DU W. Solving the logit-based stochastic user equilibrium problem with elastic demand based on the extended traffic network model[J]. European Journal of Operational Research, 2014, 239(1): 112-118. [15] MENG Q, LAM W H K, YANG L. General stochastic user equilibrium traffic assignment problem with link capacity constraints[J]. Journal of Advanced Transportation, 2008, 42(4): 429-465. [16] MENG Q, LIU Z. Mathematical models and computational algorithms for probit-based asymmetric stochastic user equilibrium problem with elastic demand[J]. Transportmetrica, 2012, 8(4): 261-290. [17] FISK C. Some developments in equilibrium traffic assignment[J]. Transportation Research Part B, 1980, 14(3): 243-255. [18] LEBLANC L J, MORLOK E K, PIERSKALLA W P. An efficient approach to solving the road network equilibrium traffic assignment problem[J]. Transportation Research, 1975, 9(5): 309-318. [19] HAN S. A route-based solution algorithm for dynamic user equilibrium assignments[J]. Transportation Research Part B, 2007, 41(10): 1094-1113. [20] DAMBERG O, LUNDGREN J T, PATRIKSSON M. An algorithm for the stochastic user equilibrium problem[J]. Transportation Research Part B, 1996, 30(2): 115-131. [21] YUAN G, WEI Z. Convergence analysis of a modified BFGS method on convex minimizations[J]. Computational Optimization and Applications, 2010, 47(2): 237-255. |
[1] | NIE Cong,LV Zhen-su . A variable stepsize affine projection algorithm based on a variable data-reuse factor [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 36-38 . |
|