JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2018, Vol. 48 ›› Issue (1): 3641.doi: 10.6040/j.issn.16723961.0.2016.408
Previous Articles Next Articles
LIU Jianmei, MA Shuaiqi^{*}
CLC Number:
[1] SHEFFI Y, POWELL W B. An algorithm for the equilibrium assignment problem with random link times[J]. Networks, 1982, 12(2): 191207. [2] MAHER M. Algorithms for logitbased stochastic user equilibrium assignment[J]. Transportation Research Part B, 1998, 32(8): 539549. [3] DIAL R B. A probabilistic multipath traffic assignment model which obviates path enumeration[J]. Transportation Research, 1971, 5(2): 83111. [4] BELL M G. Alternatives to Dial's logit assignment algorithm[J]. Transportation Research Part B, 1995, 29(4): 287295. [5] CHEN M, ALFA A S. Algorithms for solving Fisk's stochastic traffic assignment model[J]. Transportation Research Part B, 1991, 25(6): 405412. [6] BEKHOR S, TOLEDO T. Investigating pathbased solution algorithms to the stochastic user equilibrium problem[J]. Transportation Research Part B, 2005, 39(3): 279295. [7] ZHOU B, LI X, HE J. Exploring trust region method for the solution of logitbased stochastic user equilibrium problem[J]. European Journal of Operational Research, 2014, 239(1): 4657. [8] ZHOU B, BLIEMER M C J, LI X, et al. A modified truncated Newton algorithm for the logitbased stochastic user equilibrium problem[J]. Applied Mathematical Modelling, 2015, 39(18): 54155435. [9] CEYLAN H, BELL M G H. Genetic algorithm solution for the stochastic equilibrium transportation networks under congestion[J]. Transportation Research Part B, 2005, 39(2): 169185. [10] LIU J, MA S, HUANG C, et al. A dimensionreduced method of sensitivity analysis for stochastic user equilibrium assignment model[J]. Applied Mathematical Modelling, 2010, 34(2): 325333. [11] CONNORS R D, SUMALEE A, WATLING D P. Sensitivity analysis of the variable demand probit stochastic user equilibrium with multiple userclasses[J]. Transportation Research Part B, 2007, 41(6): 593615. [12] HBAR GERA. Originbased algorithm for the traffic assignment problem[J]. Transportation Science, 2002, 36(4): 398417. [13] WEI C, ASAKURA Y. A Bayesian approach to traffic estimation in stochastic user equilibrium networks[J]. ProcediaSocial and Behavioral Sciences, 2013, 80(11): 591607. [14] YU Q, FANG D, DU W. Solving the logitbased stochastic user equilibrium problem with elastic demand based on the extended traffic network model[J]. European Journal of Operational Research, 2014, 239(1): 112118. [15] MENG Q, LAM W H K, YANG L. General stochastic user equilibrium traffic assignment problem with link capacity constraints[J]. Journal of Advanced Transportation, 2008, 42(4): 429465. [16] MENG Q, LIU Z. Mathematical models and computational algorithms for probitbased asymmetric stochastic user equilibrium problem with elastic demand[J]. Transportmetrica, 2012, 8(4): 261290. [17] FISK C. Some developments in equilibrium traffic assignment[J]. Transportation Research Part B, 1980, 14(3): 243255. [18] LEBLANC L J, MORLOK E K, PIERSKALLA W P. An efficient approach to solving the road network equilibrium traffic assignment problem[J]. Transportation Research, 1975, 9(5): 309318. [19] HAN S. A routebased solution algorithm for dynamic user equilibrium assignments[J]. Transportation Research Part B, 2007, 41(10): 10941113. [20] DAMBERG O, LUNDGREN J T, PATRIKSSON M. An algorithm for the stochastic user equilibrium problem[J]. Transportation Research Part B, 1996, 30(2): 115131. [21] YUAN G, WEI Z. Convergence analysis of a modified BFGS method on convex minimizations[J]. Computational Optimization and Applications, 2010, 47(2): 237255. 
[1]  NIE Cong,LV Zhensu . A variable stepsize affine projection algorithm based on a variable datareuse factor [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 3638 . 
