JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2017, Vol. 47 ›› Issue (5): 179-186.doi: 10.6040/j.issn.1672-3961.0.2017.181
Previous Articles Next Articles
WANG Lei, DENG Xiaogang*, CAO Yuping, TIAN Xuemin
CLC Number:
[1] QIN S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2):220-234. [2] GE Z, SONG Z, GAO F. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10):3543-3562. [3] YIN S, LI X, GAO H, et al. Data-based techniques focused on modern industry: an overview[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1):657-667. [4] DENG X, TIAN X, CHEN S. Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis[J]. Chemometrics & Intelligent Laboratory Systems, 2013, 127(16):195-209. [5] ZHANG Y, DU W, FAN Y, et al. Process fault detection using directional kernel partial least squares[J]. Industrial & Engineering Chemistry Research, 2015, 54(9):2509-2518. [6] TIAN X, ZHANG X, DENG X, et al. Multiway kernel independent component analysis based on feature samples for batch process monitoring[J]. Neurocomputing, 2009, 72(7-9):1584-1596. [7] PEP O, CAO Y. Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations[J]. IEEE Transactions on Industrial informatics, 2010, 6(1):36-45. [8] ZHAO S J, ZHANG J, XU Y. Performance monitoring of processes with multiple operating modes through multiple PLS models[J]. Journal of Process Control, 2006, 16(7):763-772. [9] HUANG H, FENG H, PENG C. Complete local Fisher discriminant analysis with Laplacian score ranking for face recognition[J]. Neurocomputing, 2012, 89(10):64-77. [10] ZHU Z, SONG Z. A novel fault diagnosis system using pattern classification on kernel FDA subspace[J]. Expert Systems with Application, 2011, 38(6):6895-6905. [11] ZHONG S, WEN Q, GE Z. Semi-supervised Fisher discriminant analysis model for fault classification in industrial processes[J]. Chemometrics & Intelligent Laboratory Systems, 2014, 138:203-211. [12] JIANG B, ZHU X, HUANG D, et al. A combined canonical variate analysis and Fisher discriminant analysis(CVA—FDA)approach for fault diagnosis[J]. Computers & Chemical Engineering, 2015, 77:1-9. [13] SUGIYAMA M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis[J]. Journal of Machine Learning Research, 2007, 8(1):1027-1061. [14] YU J. Localized Fisher discriminant analysis based complex chemical process monitoring[J]. AIChE Journal, 2011, 57(7):1817-1828. [15] REN S, SONG Z, YANG M, et al. A novel multimode process monitoring method integrating LCGMM with modified LFDA[J]. Chinese Journal of Chemical Engineering, 2015, 23(12):1970-1980. [16] VAN M, KANG H. Wavelet kernel local fisher discriminant analysis with particle swarm optimization algorithm for bearing defect classification[J]. IEEE Transactions on Instrumentation & Measurement, 2015, 64(12):3588-3600. [17] LI F, WANG J, CHYU M K, et al. Weak fault diagnosis of rotating machinery based on feature reduction with Supervised orthogonal local fisher discriminant analysis[J]. Neurocomputing, 2015, 168(C):505-519. [18] CHIANG L H, RUSSELL E L, BRAATZ R D. Fault detection and diagnosis in industrial systems[M]. London: Springer, 2001. [19] ADIL M, ABID M, KHAN A Q, et al. Exponential discriminant analysis for fault diagnosis[J]. Neurocomputing, 2016, 171(C):1344-1353. [20] 张宇, 刘雨东, 计钊. 向量相似度测度方法[J]. 声学技术, 2009, 28(4): 532-536. ZHANG Yu, LIU Yudong, JI Zhao. Vector similarity measurement method[J]. Technical Acoustics, 2009, 28(4):532-536. [21] DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255. |
[1] | CHEN Zhiwen, PENG Tao, YANG Chunhua , HE Zhangming, YANG Chao, YANG Xiaoyue. A fault detection method based on modified canonical correlation analysis [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 44-50. |
|