JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2017, Vol. 47 ›› Issue (4): 31-36.doi: 10.6040/j.issn.1672-3961.0.2016.327
Previous Articles Next Articles
MAO Beixing, CHENG Chunrui
CLC Number:
[1] 丁金凤,张毅. 基于按指数律拓展的分数阶积分的El-Nabulsi-Pfaff 变分问题的Noether 对称性[J].中山大学学报(自然科学版), 2014, 54(6):150-154. DING Jinfeng, ZHANG Yi.Neother symmetries for El-Nabulsi-Pfaff variational problem for extended exponential fractional integral[J]. Journal of Zhongshan University(Science Edition), 2014, 53(6):150-154. [2] 金世欣, 张毅.基于Caputo分数阶导数的含时滞的非保守系统动力学的Noether 对称性[J].中山大学学报(自然科学版), 2015, 54(5):49-55. JIN Shixin, ZHANG Yi. Noether symmetries for non-conservative Lagrange systems with time delay based on Caputo fractional derivative[J]. Journal of Zhongshan University(Science Edition), 2015, 54(5):49-55. [3] ZHANG Yi. Fractional differential equations of motion interms of combined riemann-liouville derivatives[J].Chinese Physics B, 2012, 8(21): 302-306. [4] SALARIEH H, ALASTY A. Adaptive synchronization of two chaotic systems with stochastic unknown parameters[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(2):508-519. [5] SUN Y P, LI J M, WANG J A, et al. Generalized projective synchronization of chaotic systems via adaptive learning control[J].Chinese Physics B, 2010, 19(2):502-505. [6] LIU P, LIU S. Robust adaptive full state hybrid synchronization of chaotic complex systems with unknown parameters and external disturbances[J]. Nonlinear Dynamics, 2012, 70(1):585-599. [7] YANG L, YANG J.Robust finite-time convergence of chaotic systems via adaptive terminal sliding mode scheme[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(6):2405-2413. [8] 毛北行, 张玉霞. 具有非线性耦合复杂网络混沌系统的有限时间同步[J].吉林大学学报(理学版), 2015, 53(4):757-761. MAO Beixing, ZHANG Yuxia. Finite-time chaos synchronization of complex networks systems with nonlinear coupling[J]. Journal of Jiling University(Science Edition), 2015, 53(4):757-761. [9] MOHAMMAD P A. Robust finite-time stabilization of fractional-order chaotic susyems based on fractional Lyapunov stability theory[J].Journal of Computation and Nonlinear Dynamics, 2012, 32(7):1011-1015. [10] MILAD Mohadeszadeh, HADI Delavari.Synchronization of fractional order hyper-chaotic systems based on a new adaptive sliding mode control[J].International Journal of Dynamics and Control, 2015, 10(7):435-446. [11] WANG X, HE Y.Projective synchronization of fractional order chaotic system based on linear separation[J].Phys Lett A, 2008, 37(12):435-441. [12] 孙宁, 张化光, 王智良. 不确定分数阶混沌系统的滑模投影同步[J].浙江大学学报(工学版), 2010, 44(7):1288-1291. SUN Ning, ZHANG Huaguang, WANG Zhiliang. Projective synchronization of uncertain fractional order chaotic system using sliding mode controller[J].Journal of Zhejiang University(Engineering Science), 2010, 44(7):1288-1291. [13] 余明哲,张友安. 一类不确定分数阶混沌系统的滑模自适应同步[J].北京航空航天大学学报, 2014, 40(9):1276-1280. YU Mingzhe, ZHANG Youan. Sliding mede adaptive synchronization for a class of fractional-order chaotic systems with uncertainties[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9):1276-1280. [14] 仲启龙, 邵永辉, 郑永爱. 分数阶混沌系统的主动滑模同步[J].动力学与控制学报, 2015, 13(1):18-22. ZHONG Qilong, SHAO Yonghui, ZHENG Yongai. Synchronization of the fractional order chaotic systems based on TS models[J].Journal of Dynamics and Control, 2012, 17(2):46-49. [15] 张燕兰. 分数阶Rayleigh-Duffling-like系统的自适应追踪广义投影同步[J].动力学与控制学报, 2014, 12(4):348-352. ZHANG Yanlan. Adaptive tracking generalized projective synchronization of fractional Rayleigh-Duffling-like system[J].Journal of Dynamics and Control, 2014, 12(4): 348-352. [16] GRIGORAS V, GRIGORAS C. A novel chaotic systems for random pulse generation[J].Advanced in Electrical and Computer Engineering, 2014, 14(2):109-112. [17] 徐瑞萍, 高明美. 自适应终端滑模控制不确定混沌系统的同步[J].控制工程, 2016, 23(5):715-719. XU Ruiping, GAO Mingmei. Synchronization of chaotic susyems with uncertainty using adaptive terminal sliding mode controller[J].Control Engineering of China, 2016, 23(5):715-719. [18] PODLUBN Y. Fractional differential equation[M]. New York:Academic Press, 1999. [19] BHAT S P, BERNSTEIN D S. Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control Signals and Systems, 2005, 17(2):101-127. [20] MOHAMMAD P A, SOHRAB K, GHASSE Mhassem A. Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique[J]. Applied Mathematical Modelling, 2011, 35(6):3080-3091. |
[1] | WANG Dongxiao. Two methods for sliding mode synchronization of five-dimensional fractional-order chaotic systems with entanglement iterms [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(5): 85-90. |
[2] | WANG Chunyan, DI Jinhong. Synchronization control of fractional-order multi-scroll chaotic system based on reduced-order method [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(5): 91-94. |
[3] | MAO Beixing. Ratio integral sliding mode synchronization control of entanglement chaotic systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 50-54. |
[4] | MENG Xiaoling, WANG Jianjun. Chaos synchronization of a class of fractional-order coronary artery systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 55-60. |
[5] | LI Qingbin, WANG Xiaodong. Terminal sliding model control chaos synchronization of fractional-order emotion mode systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 84-88. |
[6] | MAO Beixing, WANG Dongxiao. Sliding model chaos synchronization control of a class of fractional-order multi-scroll systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 79-83. |
[7] | LIANG Qiushi, ZHAO Zhicheng. A position sensorless control strategy for BLDCM based on a fractional order sliding mode observer [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 96-101. |
[8] | TANG Qingshun, JIN Lu, LI Guodong, WU Chunfu. Robotic manipulators tracking control based on adaptive terminal sliding mode controller [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 45-53. |
[9] | LIU Xiangjie, HAN Yaozhen. Multi-machine power system excitation control based on continuous higher-order sliding mode [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 64-71. |
[10] | SUN Meimei, HU Yun'an, WEI Jianming. Synchronization of multiwing hyperchaotic systems via adaptive sliding mode control [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 45-51. |
[11] | XIE Jing, KAO Yonggui, GAO Cunchen, ZHANG Mengqiao. Integral sliding mode control for uncertain stochastic singular Markovian jump systems with time-varying delays [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(4): 31-38. |
[12] | ZHAO Zhan-shan1,2, ZHANG Jing3, SUN Lian-kun, DING Gang1. Design of self-adaptive sliding mode controller with finite time convergence [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(4): 74-78. |
[13] | JIN Xin,JIANG Ming-yan . Chaos synchronization control for a new chaotic system with diverse structures base on nonlinear control [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(5): 78-82 . |
|