JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2016, Vol. 46 ›› Issue (2): 64-71.doi: 10.6040/j.issn.1672-3961.0.2016.011

Previous Articles     Next Articles

Multi-machine power system excitation control based on continuous higher-order sliding mode

LIU Xiangjie1, HAN Yaozhen1,2*   

  1. 1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Beijing 102206, China;
    2. School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, Shandong, China
  • Received:2016-01-08 Online:2016-04-20 Published:2016-01-08

Abstract: A continuous higher-order sliding mode excitation control strategy was proposed for improving transient stability of multi-machine power system. Each power angle deviation was chosen as sliding variable. Higher-order sliding mode control for nonlinear and uncertain multi-machine power system was converted to finite time stability problem of uncertain integral chain. The controller was composed of geometric homogeneous continuous control law and second-order sliding mode super-twisting algorithm to achieve finite time convergence and conquer system uncertainties. The derivatives of power angles were estimated by so-called exact robust differentiator. Finite time stabilization of closed-loop system was theoretically proved. The proposed excitation control scheme could stabilize terminal voltage and enhance transient stability effectively. Simulation results for a three-machine system verified the validity of the proposed control method.

Key words: higher-order sliding mode, multi-machine power system, super-twisting algorithm, transient stability, excitation control

CLC Number: 

  • TP273
[1] ZHAO P, YAO W, WEN J, et al.Improved synergetic excitation control for transient stability enhancement and voltage regulation of power systems[J].International Journal of Electrical Power & Energy Systems, 2015, 68:44-51.
[2] 阮阳, 袁荣湘.采用输出反馈方式的电力系统非线性励磁控制[J]. 中国电机工程学报, 2011, 31(34):68-76. RUAN Yang, YUAN Rongxiang. Output feedback based nonlinear excitation control for power systems[J]. Proceedings of the CSEE, 2011, 31(34):68-76.
[3] KUNDUR P. Power system stability and control[M].NewYork: McGraw-Hill, 1994:813-814.
[4] GURRALA G, SEN I.Power system stabilizers design for interconnected power systems[J].IEEE Transactions on Power Systems, 2010, 25(2):1042-1051.
[5] HOSSAIN M J, POTA H R, UGRINOVSKII V A, et al. Voltage mode stabilisation in power systems with dynamic loads[J]. International Journal of Electrical Power & Energy Systems, 2010, 32(9):911-920.
[6] 阮阳, 袁荣湘, 万黎, 等. 同步发电机的非线性鲁棒电压控制[J]. 电工技术学报, 2012, 27(9):9-16. RUAN Yang, YUAN Rongxiang, WAN Li, et al. Nonlinear robust voltage control for synchronous generators[J]. Transactions of China Electrotechnical Society, 2012, 27(9):9-16.
[7] 兰洲,甘德强,倪以信,等.电力系统非线性鲁棒自适应分散励磁控制设计[J].中国电机工程学报,2006,31(13):33-39. LAN Zhou, GAN Deqiang, NI Yixin, et al. Decentralized nonlinear robust adaptive excitation control design for power systems[J].Proceedings of the CSEE, 2006, 31(13):33-39.
[8] 古丽扎提. 海拉提, 王杰. 广义 Hamilton 多机电力系统的广域时滞阻尼控制[J].中国电机工程学报,2014,34(34):6199-6208. GULIZHATI Hailati, WANG Jie. Wide-area time-delay damping control of generalized hamilton multi-machine power system[J]. Proceedings of the CSEE, 2014, 34(34):6199-6208.
[9] GHASEMI A, SHAYEGHI H, ALKHATIB H. Robust design of multimachine power system stabilizers using fuzzy gravitational search algorithm[J]. International Journal of Electrical Power & Energy Systems, 2013, 51:190-200.
[10] 赵洪山, 兰晓明, 周雪青. 基于平衡降阶模型的多机系统非线性励磁预测控制[J]. 中国电机工程学报, 2013, 36(22):61-67. ZHAO Hongshan, LAN Xiaoming, ZHOU Xueqing. Nonlinear excitation prediction control of multi-machine power systems based on balanced reduced model[J]. Proceedings of the CSEE, 2013, 36(22):61-67.
[11] MAHMUD M A, HOSSAIN M J, POTA H R. Transient stability enhancement of multimachine power systems using nonlinear observer-based excitation controller[J]. International Journal of Electrical Power & Energy Systems, 2014, 58:57-63.
[12] 吴忠强, 宋明厚, 付立元. 多机电力系统间接自适应模糊分散H控制研究[J]. 电力自动化设备, 2013, 33(1):23-27. WU Zhongqiang, SONG Minghou, FU Liyuan. Indirect adaptive fuzzy and distributed H∞control for multi-machine power system[J]. Electric Power Automation Equipment, 2013, 33(1):23-27.
[13] 赵辉, 王亚菲, 王红君, 等. 基于滑模变结构控制的余热发电机机组励磁控制研究[J]. 电力系统保护与控制, 2015, 43(6):8-13. ZHAO Hui, WANG Yafei, WANG Hongjun, et al. Study of waste heat power generation units excitation control based on sliding mode variable structure control[J]. Power System Protection and Control, 2015, 43(6):8-13.
[14] 邹德虎, 王宝华. 多机电力系统自适应鲁棒 Terminal 滑模励磁控制[J].电力自动化设备, 2011(12):79-82. ZOU Dehu, WANG Baohua. Adaptive and robust excitation control with Terminal sliding mode for multi-machine power system[J]. Electric Power Automation Equipment, 2011(12):79-82.
[15] BANDAL V, BANDYOPADHYAY B. Robust decentralised output feedback sliding mode control technique-based power system stabiliser(PSS)for multimachine power system[J]. IET Control Theory & Applications, 2007, 1(5):1512-1522.
[16] HUERTA H, LOUKIANOV A G, CA(~overN)EDO J M. Decentralized sliding mode block control of multimachine power systems[J]. International Journal of Electrical Power & Energy Systems, 2010, 32(1):1-11.
[17] NECHADI E, HARMAS M N, HAMZAOUI A, et al. A new robust adaptive fuzzy sliding mode power system stabilizer[J]. International Journal of Electrical Power & Energy Systems, 2012, 42(1):1-7.
[18] SAOUDI K, HARMAS M N. Enhanced design of an indirect adaptive fuzzy sliding mode power system stabilizer for multi-machine power systems[J]. International Journal of Electrical Power & Energy Systems, 2014, 54:425-431.
[19] LEVANT A, MICHAEL A. Adjustment of high-order sliding-mode controllers[J]. International Journal of Robust and Nonlinear Control, 2009, 19(15):1657-1672.
[20] 易伯瑜, 康龙云, 陶思念, 等. 永磁同步电机抗扰高阶滑模观测器设计[J]. 电工技术学报, 2014, 29(5):132-140. YI Boyu, KANG Longyun, TAO Sinian, et al. Design of robust high order sliding mode observer for permanent magnet synchronous motors[J]. Transactions of China Electrotechnical Society, 2014, 29(5):132-140.
[21] LIU X, HAN Y. Finite time control for MIMO nonlinear system based on higher-order sliding mode[J]. ISA transactions, 2014, 53(6):1838-1846.
[22] BELTRAN B, EL HACHEMI BENBOUZID M, AHMED-ALI T. Second-order sliding mode control of a doubly fed induction generator driven wind turbine[J]. IEEE Transactions on Energy Conversion, 2012, 27(2):261-269.
[23] LIU J, LAGHROUCHE S, WACK M. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications[J]. International Journal of Control, 2014, 87(6):1117-1130.
[24] EVANGELISTA C, VALENCIAGA F, PULESTON P. Active and reactive power control for wind turbine based on a MIMO 2-sliding mode algorithm with variable gains[J]. IEEE Transactions on Energy Conversion, 2013, 28(3):682-689.
[25] COLBIA-VEGA A, DE LEON-MORALES J, FRIDMAN L, et al. Robust excitation control design using sliding-mode technique for multimachine power systems[J]. Electric Power Systems Research, 2008, 78(9):1627-1634.
[26] HUERTA H, LOUKIANOV A G, CANEDO J M. Robust multimachine power systems control via high order sliding modes[J]. Electric Power Systems Research, 2011, 81(7):1602-1609.
[27] BENAHDOUGA S, BOUKHETALA D, BOUDJEMA F. Decentralized high order sliding mode control of multimachine power systems[J]. International Journal of Electrical Power & Energy Systems, 2012, 43(1):1081-1086.
[28] DEFOORT M, FLOQUET T, KOKOSY A, et al. A novel higher order sliding mode control scheme[J]. Systems & Control Letters, 2009, 58(2):102-108.
[29] BHAT S P, BERNSTEIN D S. Geometric homogeneity with applications to finite-time stability[J].Mathematics of Control, Signals and Systems, 2005, 17(2):101-127.
[30] 赵占山, 张静, 孙连坤, 等. 有限时间收敛的滑模自适应控制器设计[J]. 山东大学学报(工学版), 2012, 42(4):74-78. ZHAO Zhanshan, ZHANG Jing, SUN Liankun, et al. Design of self-adaptive sliding mode controller with finite time convergence [J]. Journal of Shandong University(Engineering Science), 2012, 42(4):74-78.
[1] CONG Yini, CAO Zenggong, MU Hong, WANG Chunyi, LIU Yutian. Scheme analysis on GW-scale coastal mud flat PV system connected to power grid [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 77-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[2] YUE Yuan-Zheng. Relaxation in glasses far from equilibrium[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 1 -20 .
[3] CHENG Daizhan, LI Zhiqiang. A survey on linearization of nonlinear systems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 26 -36 .
[4] WANG Yong, XIE Yudong. Gas control technology of largeflow pipe[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 70 -74 .
[5] LIU Xin 1, SONG Sili 1, WANG Xinhong 2. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 98 -100 .
[6] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 104 -107 .
[7] CHEN Huaxin, CHEN Shuanfa, WANG Binggang. The aging behavior and mechanism of base asphalts[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 125 -130 .
[8] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 131 -136 .
[9] LI Shijin, WANG Shengte, HUANG Leping. Change detection with remote sensing images based on forward-backward heterogenicity[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 1 -9 .
[10] ZHAO Ke-Jun, WANG Xin-Jun, LIU Xiang, CHOU Yi-Hong. Algorithms of continuous top-k join query over structured overlay networks[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 32 -37 .