JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2015, Vol. 45 ›› Issue (6): 65-70.doi: 10.6040/j.issn.1672-3961.0.2015.107

Previous Articles     Next Articles

Dynamic modeling of tail rope and swing parameters analysis

LI Chao1, WANG Zengcai1, ZHANG Wanzhi1, HUANG Xianhua2, ZHU Shuchuan2, MENG Huai2   

  1. 1. College of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. Yanzhou Coal Mining Co, Zoucheng 273500, Shandong, China
  • Received:2014-04-20 Revised:2015-10-10 Published:2014-04-20

Abstract: To solve the short-life problem of hoist tail rope caused by the swing of tail rope during the lifting movement, the visco-elastic vibration model was built based on the discretization modeling method and the ADAMS(automatic dynamic analysis of mechanical systems) software. The characteristic of the tail rope was studied by implementing the motion simulation. The test was designed to record swing amplitude of the tail rope at the shaft bottom. Test results were compared with simulation results to verify the rationality of the model. The influence of different parameters on the swing amplitude of the tail rope was analyzed. The results showed that the maximum swing amplitude of the micro segments of tail rope was generated at the shaft bottom, which was closely related to the vertical rotational stiffness coefficient KTZ and the vertical rotation damping coefficient CTZ as well as the mass. The left swing amplitude was most greatly influenced by the rotational stiffness coefficient while the right swing amplitude was most affected by the mass. When 50% improvement of the parameters of the model is achieved, the left and right swing amplitude were increased by 26.41% and 21.75%, respectively. Test results were basically in line with the simulation results, which could provide a reference for the selection of tail rope and construction of the isolation device.

Key words: swing amplitude, discretization modeling, motion simulation, visco-elastic vibration model, tail rope

CLC Number: 

  • TD444
[1] 何定源. 改善深部铜矿主井提升平衡尾绳扭结的途径[J]. 矿冶, 1999, 8(1):15-18. HE Dingyuan. The approach of improve the twist of tail rope in deep copper mine[J]. Mining and Metallurgy, 1999, 8(1):15-18.
[2] 王守军. 煤矿立井多绳摩擦式提升机平衡尾绳选型、损坏原因简析[J]. 科技与企业, 2013(3):273. WANG Shoujun. Selection and damage reason analysis of multi rope friction hoist tail rope[J]. Science Technology and Enterprises, 2013(3):273.
[3] 汪鲁胜. 多绳摩擦提升系统尾绳断裂原因及其防护[J]. 矿业研究与开发, 1999, 19(S1):27-28. WANG Lusheng. Reason and protection of the tail rope breaking in multi-rope friction mine hoist[J]. Mining Research and Development, 1999, 19(S1):27-28.
[4] 陈新永. 多绳摩擦式提升机尾绳快速更换法[J]. 中国西部科技, 2011, 10(23):22. CHEN Xinyong. Multi rope friction hoist fast replacing tail rope method[J]. Science and Technology of West China, 2011, 10(23):22.
[5] 李浩. 多绳摩擦提升机尾绳的快速更换方法[J]. 煤炭技术, 2008, 27(7):21-22. LI Hao. Rapid replacement method of multi rope friction hoist tail rope[J]. Coal Technology, 2008, 27(7):21-22.
[6] 李振国. 瑞典HSCE2×8摩擦式提升机尾绳改造[J]. 矿山机械, 2007, 35(12):75-76. LI Zhenguo. Transformation of the Swedish HSCE2*8 friction hoist tail rope[J]. Mining and Processing Equipment, 2007, 35(12):75-76.
[7] 王晓辉. 金属矿山千米竖井平衡尾绳选型及使用经验[J]. 矿山机械, 2014, 42(4):133-134. WANG Xiaohui. Selecting and using experience of balance tail rope in kilometer shaft metal mine[J]. Mining and Processing Equipment, 2014, 42(4):133-134.
[8] 杨明法,高克斌. 延长立式提升尾绳寿命工艺的改进[J]. 山东煤矿科技, 2009(4):32-33. YANG Mingfa, GAO Kebin. Improving the life process of vertical lifting tail rope[J]. Shandong Coal Science and Technology, 2009(4):32-33.
[9] 周明弘. 主提升系统托尾绳保护装置设计与应用的探讨[J]. 电子世界, 2013(18):73-74. ZHOU Minghong. Discussion on design and application of the protection device for main lifting system[J]. Electronics World, 2013(18):73-74.
[10] 黄秋艳. 多柔体系统动力学建模及符号演算的研究[D]. 西安:西安电子科技大学, 2004. HUANG Qiuyan. Research on dynamics modeling and symbolic computation of flexible multibody systems[D]. Xi'an:Xidian University, 2004.
[11] WANG Dagang, ZHANG Dekun, ZHANG Zefeng, et al. Effect of various kinematic parameters of mine hoist on fretting parameters of hoisting rope and a new fretting fatigue test apparatus of steel wires[J]. Engineer Failure Analysis, 2012(22):92-112.
[12] 刘才山, 陈滨. 多柔体系统碰撞动力学研究综述[J].力学进展, 2000, 30(1):7-12. LIU Caishan, CHEN Bin. Overview of collision dynamics of flexible multibody systems[J]. Advances in Mechanics, 2000, 30(1):7-12.
[13] ZAHED Siddigue, DAVID W Rosen. A virtual prototyping approach to product disassembly reasoning[J]. Computer-Aided Design, 1997, 29(12):84-86.
[14] PFLEIDER E P, MALMLOW E G, LANDAU F. Friction drive mine hoists-recent installations and design considerations[J]. Mining Engineering, 1955(7):25-39.
[15] 董达善,孙友刚,刘龙. 基于虚拟样机技术的钢丝绳动张力仿真研究[J]. 机床与液压, 1999, 41(17):156-159. DONG Dashan, SUN Yougang, LIU Long. Study on dynamic tension of wire rope based on virtual prototype technology[J]. Machine Tool and Hydraulics, 1999, 41(17):156-159.
[16] 杜帆,杨兆建. 基于非均匀弦振动的提升机钢丝绳张力测试方法[J]. 煤炭学报,2010, 35(5):840-843. DU Fan, YANG Zhaojian. Test method of hoist wire-rope tension based on inhomogeneous chord vibration[J]. International Journal of Coal Science and Technology, 2010, 35(5):840-843.
[17] 周炜,易建军,郑建荣. ADAMS软件中绳索类物体的一种建模方法[J]. 现代制造工程, 2004(5):38-39. ZHOU Wei, YI Jianjun, ZHENG Jianrong. Modeling flexible rigging in ADAMS software[J]. Modern Manufacturing Engineering, 2004(5):38-39.
[18] 郑建荣. ADAMS虚拟样机技术入门与提高[M]. 北京:机械工业出版社, 2002:65-69.
[19] 王得胜,孔德文,赵克利. 机械式矿用挖掘机钢丝绳在MSC Adams中的建模方法[J]. 计算机辅助工程, 2006, 15(Z1):364-366. WANG Desheng, KONG Dewen, ZHAO Keli. Modeling methods for wire cables of mining excarator by MSC adams[J]. Computer Aided Engineering, 2006, 15(Z1):364-366.
[20] 张营章,张顺心,崔少杰, 等. 基于ADAMS/Cable的起重机钢丝绳的仿真分析[J]. 制造业自动化, 2013, 35(13):10-12. ZHANG Yingzhang, ZHANG Shunxin, CUI Shaojie, et al. Simulation and analysis of the wire rope of crane based on ADAMS/Cable[J]. Manufacturing Automation, 2013, 35(13):10-12.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!