JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2015, Vol. 45 ›› Issue (6): 29-35.doi: 10.6040/j.issn.1672-3961.0.2015.201
Previous Articles Next Articles
ZHAO Yige, WANG Yuzhen
CLC Number:
[1] PODLUBNY I. Fractional differential equations[M]. New York:Academic Press, 1999. [2] KILBAS A A, SRIVASTAVA H H, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Elsevier Science B V:Amsterdam, 2006. [3] MILLER K S, ROSS B. An introduction to the fractional calculus and fractional differential equation[M]. New York:John Wiley, 1993. [4] MANABE S. The non-integer integral and its application to control systems[J]. Electrotechnical Journal of Japan, 1961, 6(3-4):83-87. [5] TAVAZOEI M S, HAERI M. A note on the stability of fractional order systems[J]. Mathematics and Computers in Simulation, 2009, 79(5):1566-1576. [6] CHEN Y Q, MOORE K L. Analytical stability bound for a class of delayed fractional-order dynamic systems[J]. Nonlinear Dynamics, 2002, 29(1):191-200. [7] AHN H S, CHEN Y Q, PODLUBNY I. Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality[J]. Applied Mathematics and Computation, 2007, 187(1):27-34. [8] MOORNANI K A, HAERI M. On robust stability of linear time invariant fractional-order systems with real parametric uncertainties[J]. ISA Transactions, 2009, 48(4):484-490. [9] CHEN Y Q, AHN H S, XUE D Y. Robust controllability of interval fractional order linear time invariant systems[J]. Signal Processing, 2006, 86(10):2794-2802. [10] MOORNANI K A, HAERI M. Necessary and sufficient conditions for BIBO-stability of some fractional delay systems of neutral type[J]. IEEE Transactions on Automatic Control, 2011, 56(1):125-128. [11] ABUSAKSAKA A B, PARTINGTON J R. BIBO stability of some classes of delay systems and fractional systems[J]. Systems & Control Letters, 2014, 64:43-46. [12] LAZAREVIĆ M P. Finite time stability analysis of PDα fractional control of robotic time-delay systems[J]. Mechanics Research Communications, 2006, 33(2):269-279. [13] LAZAREVIĆ M P, SPASIĆ A M. Finite-time stability analysis of fractional order time-delay systems:Gronwall's approach[J]. Mathematical and Computer Modelling, 2009, 49(3):475-481. [14] KAMAL S, RAMAN A, BANDYOPADHYAY B. Finite-time stabilization of fractional order uncertain chain of integrator:an integral sliding mode approach[J]. IEEE Transactions on Automatic Control, 2013, 58(6):1597-1602. [15] SHEN J, LAM J. Non-existence of finite-time stable equilibria in fractional-order nonlinear systems[J]. Automatica, 2014, 50(2):547-551. [16] LAKSHMIKANTHAM V, LEELA S, SAMBANDHAM M. Lyapunov theory for fractional differential equations[J]. Communications in Applied Analysis, 2008, 12(4):365-376. [17] BURTON T A. Fractional differential equations and Lyapunov functionals[J]. Nonlinear Analysis:Theory, Methods & Applications, 2011, 74(16):5648-5662. [18] LI Y, CHEN Y Q, PODLUBNY I. Mittag-Leffler stability of fractional order nonlinear dynamic systems[J]. Automatica, 2009, 45(8):1965-1969. [19] LI Y, CHEN Y Q, PODLUBNY I. Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized Mittag-Leffler stability[J]. Computers and Mathematics with Applications, 2010, 59(5):1810-1821. [20] SADATI S J, BALEANU D, RANJBAR A, et al. Mittag-Leffler stability theorem for fractional nonlinear systems with delay[J]. Abstract and Applied Analysis, 2010, 2010:1-7. [21] AGUILA-CAMACHO N, DUARTE-MERMOUD M A, GALLEGOS J A. Lyapunov functions for fractional order systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(9):2951-2957. [22] 韩正之, 陈鹏年, 陈树中. 自适应控制[M]. 北京:清华大学出版社, 2011. [23] XIE X J, DUAN N, YU X. State-feedback control of high-order stochastic nonlinear systems with SiISS inverse dynamics[J]. IEEE Transactions on Automatic Control, 2011, 56(8):1921-1926. [24] XIE X J, LIU L. A homogeneous domination approach to state feedback of stochastic high-order nonlinear systems with time-varying delay[J]. IEEE Transactions on Automatic Control, 2013, 58(2):494-499. |
[1] | CHENG Daizhan, LI Zhiqiang. A survey on linearization of nonlinear systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 26-36. |
|