Journal of Shandong University(Engineering Science) ›› 2024, Vol. 54 ›› Issue (6): 38-48.doi: 10.6040/j.issn.1672-3961.0.2023.198

• Machine Learning & Data Mining • Previous Articles    

An improved granular reduction algorithm for pessimistic multi-granularity rough sets

XIE Li1, YE Jun1,2*, LAI Pengfei1, LU Lan1, ZHOU Haoyan1, LI Zhaobin1   

  1. 1. College of Information Engineering, Nanchang Institute of Engineering, Nanchang 330099, Jiangxi, China;
    2. Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing(Nanchang Institute of Engineering), Nanchang 330099, Jiangxi, China
  • Published:2024-12-26

CLC Number: 

  • TP18
[1] SONG S M, REN X J, HE J, et al. An optimal hierarchical approach for oral cancer diagnosis using rough set theory and an amended version of the competitive search algorithm[J]. Diagnostics, 2023, 13(14):2454.
[2] PEDRYCZ W. Granular computing for data analytics: a manifesto of human-centric computing[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(6): 1025-1034.
[3] ALFEO A L, CIMINO M G C A, GAGLIARDI G. Concept-wise granular computing for explainable artificial intelligence[J]. Granular Computing, 2022, 8(4): 827-838.
[4] 高天宇, 王庆荣, 杨磊. 粗糙集属性依赖度强化的应急数据挖掘模型[J]. 计算机工程与应用, 2021, 57(3): 87-93. GAO Tianyu, WANG Qingrong, YANG Lei. Data mining model based on attribute dependability enhancement of rough set[J]. Computer Engineering and Applications, 2021, 57(3): 87-93.
[5] WANG H, GUAN J T. A dynamic framework for updating approximations with increasing or decreasing objects in multi-granulation rough sets[J]. Soft Computing, 2023, 27(9): 5257-5276.
[6] QIAN Y H, LIANG J Y, YAO Y Y, et al. MGRS: a multi-granulation rough set[J]. Information Sciences, 2010, 180(6): 949-970.
[7] SUN B Z, ZHANG X R, QI C, et al. Neighborhood relation-based variable precision multigranulation Pythagorean fuzzy rough set approach for multi-attribute group decision making[J]. International Journal of Approximate Reasoning, 2022, 151: 1-20.
[8] ZHANG X Y, JIANG J F. Measurement, modeling, reduction of decision-theoretic multigranulation fuzzy rough sets based on three-way decisions[J]. Information Sciences, 2022, 607: 1500-1582.
[9] ATEF M, ATIK E F E A. Some extensions of covering-based multigranulation fuzzy rough sets from new perspectives[J]. Soft Computing, 2021, 25(8): 6633-6651.
[10] 张明, 程科, 杨习贝, 等. 基于加权粒度的多粒度粗糙集[J]. 控制与决策, 2015, 30(2): 222-228. ZHANG Ming, CHENG Ke, YANG Xibei, et al. Multigranulation rough set based on weighted granulations[J]. Control and Decision, 2015, 30(2): 222-228.
[11] 史进玲, 张倩倩, 徐久成. 多粒度决策系统属性约简的最优粒度选择[J]. 计算机科学, 2018, 45(2), 152-156. SHI Jinling, ZHANG Qianqian, XU Jiucheng. Optimal granularity selection of attribute reductions in multi-granularity decision system[J]. Computer Science, 2018, 45(2), 152-156.
[12] 吕萍, 常玉慧, 钱进. 知识粒度框架下并行知识约简算法研究[J]. 南京大学学报(自然科学), 2022, 58(4): 594-603. LÜ Ping, CHANG Yuhui, QIAN Jin. Parallel knowledge reduction algorithm using knowledge granularity[J]. Journal of Nanjing University(Natural Science), 2022, 58(4): 594-603.
[13] 李金海, 周新然. 多粒度决策形式背景的属性约简[J]. 模式识别与人工智能, 2022, 35(5): 387-400. LI Jinhai, ZHOU Xinran. Attribute reduction in multi-granularity formal decision contexts[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(5): 387-400.
[14] 桑妍丽, 钱宇华. 一种悲观多粒度粗糙集中的粒度约简算法[J]. 模式识别与人工智能, 2012, 25(3): 361-366. SANG Yanli, QIAN Yuhua. A granular space reduction approach to pessimistic multi-granulation rough sets[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(3): 361-366.
[15] 桑妍丽, 钱宇华. 多粒度决策粗糙集中的粒度约简方法[J]. 计算机科学, 2017, 44(5): 199-205. SANG Yanli, QIAN Yuhua. Granular structure reduction approach to multigranulation decision-theoretic rough sets[J]. Computer Science, 2017, 44(5): 199-205.
[16] 孟慧丽, 马媛媛, 徐久成. 基于信息量的悲观多粒度粗糙集粒度约简[J]. 南京大学学报(自然科学), 2015, 51(2): 343-348. MENG Huili, MA Yuanyuan, XU Jiucheng. The granularity reduction of pessimistic multi-granulation rough set based on the information quantity[J]. Journal of Nanjing University(Natural Science), 2015, 51(2): 343-348.
[17] 孟慧丽, 马媛媛, 徐久成. 基于下近似分布粒度熵的变精度悲观多粒度粗糙集粒度约简[J]. 计算机科学, 2016, 43(2): 83-85. MENG Huili, MA Yuanyuan, XU Jiucheng. Granularity reduction of variable precision pessimistic multi-granulation rough set based on granularity entropy of lower approximate distribution[J]. Computer Science, 2016, 43(2): 83-85.
[18] 胡善忠, 徐怡, 何明慧, 等. 多粒度粗糙集粒度约简的高效算法[J]. 计算机应用, 2017, 37(12): 3391-3396. HU Shanzhong, XU Yi, HE Minghui, et al. Effective algorithm for granulation reduction of multi-granulation rough set[J]. Journal of Computer Applications, 2017, 37(12): 3391-3396.
[19] 翁冉, 王俊红, 魏巍, 等. 基于区分矩阵的多粒度属性约简[J]. 南京航空航天大学学报, 2019, 51(5): 636-641. WENG Ran, WANG Junhong, WEI Wei, et al. Multi-granulation attribute reduction based on discernibility matrix[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(5): 636-641.
[20] 郑文彬, 李进金, 张燕兰, 等. 基于矩阵的多粒度粗糙集粒度约简方法[J]. 南京大学学报(自然科学), 2021, 51(1): 141-149. ZHENG Wenbin, LI Jinjin, ZHANG Yanlan, et al. Matrix-based granulation reduction method for multi-granulation rough sets[J]. Journal of Nanjing University(Natural Science), 2021, 51(1): 141-149.
[21] 卢加学, 汪小燕. 关于粒度重要性公式的改进[J]. 苏州科技大学学报(自然科学版), 2021, 38(4): 79-84. LU Jiaxue, WANG Xiaoyan. Improvements to the granularity importance formula[J]. Journal of Suzhou University of Science and Technology(Natural Science Edition), 2021, 38(4): 79-84.
[22] 薛占熬, 韩丹杰, 吕敏杰, 等. 一种新的基于粒度重要度的三支决策模型[J]. 计算机科学, 2019, 46(2): 236-241. XUE Zhanao, HAN Danjie, LÜ Minjie, et al. New three-way decisions model based on granularity importance degree[J]. Computer Science, 2019, 46(2): 236-241.
[23] 杨习贝, 颜旭, 徐苏平, 等. 基于样本选择的启发式属性约简方法研究[J]. 计算机科学, 2016, 43(1): 40-43. YANG Xibei, YAN Xu, XU Suping, et al. New heuristic attribute reduction algorithm based on sample selection[J]. Computer Science, 2016, 43(1): 40-43.
[24] XIAO Z, CHANG L M, DE G C, et al. Feature selection in mixed data: a method using a novel fuzzy rough set-based information entropy[J]. Pattern Recognition, 2016, 56(1): 1-15.
[25] WANG C Z, HU Q H, WANG X Z, et al. Feature selection based on neighborhood discrimination index[J]. IEEE Trans on Neural Networks and Learning Systems, 2018, 29(7): 2986-2999.
[26] 张昭琴, 徐泰华, 鞠恒荣, 等. 基于粒度的加速求解约简策略[J]. 南京理工大学学报, 2021, 45(4): 401-408. ZHANG Zhaoqin, XU Taihua, JU Hengrong, et al. Accelerative solving reduct strategy based on granularity[J]. Journal of Nanjing University of Science and Technology, 2021, 45(4): 401-408.
[1] XU Qianqian, XU Qian, XU Huachang, ZHAO Yulin, XU Kai, ZHU Hong. Intelligent prediction method of IDH1 mutation status of glioma based on CnViT [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 127-134.
[2] LIU Ziyi, CUI Chaoran, MENG Fan'an, LIN Peiguang. Multi-source-free domain adaptation with batch normalization statistics [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 102-108.
[3] Chunhong CAO,Hongxuan DUAN,Ling CAO,Lele ZHANG,Kai HU,Fen XIAO. Real-time semantic segmentation of high-resolution remote sensing image based on multi-level feature cascade [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 19-25.
[4] Yan PENG,Tingting FENG,Jie WANG. An integrated learning approach for O3 mass concentration prediction model [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 1-7.
[5] Yifei LI,Zunhua GUO. A Chirplet neural network for automatic target recognition [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 8-14.
[6] Yibin WANG,Tianli LI,Yusheng CHENG,Kun QIAN. Label distribution learning based on kernel extreme learning machine auto-encoder [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 58-65.
[7] Chunyang LI,Nan LI,Tao FENG,Zhuhe WANG,Jingkai MA. Abnormal sound detection of washing machines based on deep learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 108-117.
[8] Minghe GAO,Ying ZHANG,Rongrong ZHANG,Zihao HUANG,Linyan HUANG,Fanyu LI,Xin ZHANG,Yanhao WANG. Air quality prediction approach based on integrating forecasting dataset [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 91-99.
[9] Yingda LI,Zongxia XIE. Support vector regression algorithm based on kernel similarity reduced strategy [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 8-14.
[10] Chengbin ZHANG,Hui ZHAO,Zongyu CAO. The vulnerability mining method for KWP2000 protocol based on deep learning and fuzzing [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 17-22.
[11] Kuo PANG,Siqi CHEN,Xiaoying SONG,Li ZOU. Linguistic concept formal decision context analysis based on granular computing [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 74-81.
[12] Hong CHEN,Xiaofei YANG,Qing WAN,Yingcang MA. Multi-label feature selection algorithm based on correntropy andmanifold learning [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 27-36.
[13] Mengmeng LIANG,Tao ZHOU,Yong XIA,Feifei ZHANG,Jian YANG. Lung tumor images recognition based on PSO-ConvK convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 77-84.
[14] HE Zhengyi, ZENG Xianhua, GUO Jiang. An ensemble method with convolutional neural network and deep belief network for gait recognition and simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 88-95.
[15] WANG Tingting, ZHAI Junhai, ZHANG Mingyang, HAO Pu. K-NN algorithm for big data based on HBase and SimHash [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 54-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!