Journal of Shandong University(Engineering Science) ›› 2024, Vol. 54 ›› Issue (5): 101-110.doi: 10.6040/j.issn.1672-3961.0.2023.271

• Machine Learning & Data Mining • Previous Articles    

Federated long-term time series forecasting algorithm based on decomposed Transformer

LIU Donglan1,4*, LIU Xin1,4, LIU Jiale2, ZHAO Peng3, CHANG Yingxian3, WANG Rui1,4, YAO Honglei1,4, LUO Xin2   

  1. 1. State Grid Shandong Electric Power Research Institute, Jinan 250003, Shandong, China;
    2. School of Software, Shandong University, Jinan 250101, Shandong, China;
    3. State Grid Shandong Electric Power Company, Jinan 250001, Shandong, China;
    4. Shandong Smart Grid Technology Innovation Center, Jinan 250003, Shandong, China
  • Published:2024-10-18

CLC Number: 

  • TP183
[1] 于海东, 刘文彬, 文祥宇. 基于强化学习的电动出租车充电负荷预测[J]. 山东电力技术, 2022, 49(4): 7-14. YU Haidong, LIU Wenbin, WEN Xiangyu. Electrictaxi charging load forecasting based on reinforcement learning[J]. Shandong Electric Power Technology, 2022, 49(4): 7-14.
[2] 刘萌, 田雨扬, 谢鑫, 等. 基于模型预测控制的空气源热泵负荷目标温度控制策略[J]. 山东电力技术, 2022, 49(12): 53-59. LIU Meng, TIAN Yuyang, XIE Xin, et al. Load target temperature control strategy of air source heat pump based on model predictive control[J]. Shandong Electric Power Technology, 2022, 49(12): 53-59.
[3] 路宽, 曲建璋, 高嵩, 等. 基于变分推断的超短期风电功率预测[J]. 山东电力技术, 2023, 50(4): 13-21. LU Kuan, QU Jianzhang, GAO Song, et al. Ultra-short-term wind power prediction based on variational inference[J]. Shandong Electric Power Technology, 2023, 50(4): 13-21.
[4] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 5998-6008.
[5] ZHOU H, ZHANG S, PENG J, et al. Informer:beyond efficient transformer for long sequence time-series forecasting[C] //Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI, 2021: 11106-11115.
[6] WU H, XU J, WANG J, et al. Autoformer:decomposition Transformers with auto-correlation for long-term series forecasting[J]. Advances in Neural Information Processing Systems, 2021, 34: 22419-22430.
[7] CLEVELAND R B, CLEVELAND W S, MCRAE J E, et al. STL: a seasonal-trend decomposition[J]. Journal of Official Statistics, 1990, 6(1): 3-73.
[8] WEN Q, GAO J, SONG X, et al. RobustSTL:a robust seasonal-trend decomposition algorithm for long time series[C] //Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu, USA: AAAI, 2019: 5409-5416.
[9] ORESHKIN B N, CARPOV D, CHAPADOS N, et al. N-BEATS:neural basis expansion analysis for interpretable time series forecasting[C] //International Conference on Learning Representations. New Orleans, USA: ICLR, 2019: 1-31.
[10] MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C] //Proceedings of the 20th International Conference on Artificial Intelligence and Statistics(AISTATS). Fort Lauderdale, Flordia, USA: JMLR, 2017: 1273-1282.
[11] FORET P, KLEINER A, MOBAHI H, et al. Sharpness-awareminimization for efficiently improving generalization[C] //International Conference on Learning Rep-resentations. Addis Ababa, Ethiopia: ICLR, 2020: 1-19.
[12] ZHOU T, MA Z, WEN Q, et al. FEDformer:frequency enhanced decomposed Transformer for long-term series forecasting[C] //International Conference on Machine Learning. Baltimore, USA: PMLR, 2022: 27268-27286.
[13] RANGAPURAM S S, SEEGER M W, GASTHAUS J, et al. Deep state space models for time series forecasting[J]. Advances in Neural Information Processing Systems, 2018, 31: 7785-7794.
[14] SALINAS D, FLUNKERT V, GASTHAUS J, et al. DeepAR:probabilistic forecasting with autoregressive recurrent networks[J]. International Journal of Forecasting, 2020, 36(3): 1181-1191.
[15] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[J]. Advances in Neural Information Processing Systems, 2014, 27: 3104-3112.
[16] CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL].(2014-09-03)[2023-11-07]. https://arxiv.org/abs/1406.1078.
[17] ARIYO A A, AEDWUMI A O, AYO C K. Stock price prediction using the ARIMA model[C] //Proceedings of the 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation. Cambridge, UK: IEEE, 2014: 106-112.
[18] TAYLOR S J, LETHAM B. Forecasting at scale[J]. The American Statistician, 2018, 72(1): 37-45.
[19] DEVLIN J, CHANG M W, LEE K, et al. BERT:pre-training of deep bidirectional Transformers for language understanding[EB/OL].(2019-05-24)[2023-11-07]. https://arxiv.org/abs/1810.04805.
[20] HUANG C Z A, VASWANI A, USZKOREIT J, et al. Music Transformer:generating music with long-term structure[C] //International Conference on Learning Representations. New Orleans, USA: ICLR, 2019: 1-15.
[21] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. Animage is worth 16×16 words: Transformers for image recognition at scale[C] //International Con-ference on Learning Representations. [S.l.] : ICLR, 2021: 1-21.
[22] RAO Y, ZHAO W, ZHU Z, et al. Global filter networks for image classification[J]. Advances in Neural Information Processing Systems, 2021, 34: 980-993.
[23] LI S, JIN X, XUAN Y, et al. Enhancing the locality and breaking the memory bottleneck of Transformer on time series forecasting[J]. Advances in Neural Information Processing Systems, 2019, 32: 5243-5253.
[24] WANG S, LI B Z, KHABSA M, et al. Linformer:self-attention with linear complexity[EB/OL].(2020-06-14)[2023-11-07]. https://arxiv.org/abs/2006.04768.
[25] KAIROUZ P, MCMAHAN H B, AVENT B, et al. Advances and open problems in federated learning[J]. Foundations and Trends in Machine Learning, 2021, 14(1/2): 1-210.
[26] MOHRI M, SIVEK G, SURESH A T. Agnostic federated learning[C] //International Conference on Machine Learning. California, USA: PMLR, 2019: 4615-4625.
[27] LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[C] //Proceedings of Machine Learning and Systems. Austin, USA: MLSys, 2020: 429-450.
[28] VENKATESWARAN P, ISAHAGIAN V, MUTHUS-AMY V, et al. FedGen: generalizable federated learning for sequential data[C] //Proceedings of the 2023 IEEE 16th International Conference on Cloud Computing(CLOUD). Chicago, USA: IEEE, 2023: 308-318.
[29] ZONG L, XIE Q, ZHOU J, et al. FedCMR:federated cross-modal retrieval[C] //Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2021: 1672-1676.
[30] LI Q, HE B, SONG D. Model-contrastive federated learning[C] //Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE, 2021: 10713-10722.
[31] DURMUS A E, YUE Z, RAMON M, et al.Federated learning based on dynamic regularization[C] //International Conference on Learning Representations. [S.l.] : ICLR, 2021: 1-36.
[32] YAO D, PAN W, DAI Y, et al. Local-global knowledge distillation in heterogeneous federated learning with non-IID data[EB/OL].(2021-09-13)[2023-11-07]. https://arxiv.org/abs/2107.00051.
[33] WANG J, TANTIA V, BALLAS N, et al. SlowMo:improving communication-efficient distributed SGD with slow momentum[C] //International Conference on Learning Representations. Addis Ababa, Ethiopia: ICLR, 2020: 1-27.
[34] REDDI S J, CHARLES Z, ZAHEER M, et al. Adaptivefederated optimization[C] //International Con-ference on Learning Representations. [S.l.] : ICLR, 2021: 1-38.
[35] KARIMIREDDY S P, JAGGI M, KALE S, et al. Breaking the centralized barrier for cross-device federated learning[J]. Advances in Neural Information Processing Systems, 2021, 34: 28663-28676.
[36] KHANDURI P, SHARMA P, YANG H, et al. STEM:a stochastic two-sided momentum algorithm achieving near-optimal sample and communication complexities for federated learning[J]. Advances in Neural Information Processing Systems, 2021, 34: 6050-6061.
[37] LAKSHMINARAYANAN B, PRITZEL A, BLUNDELL C. Simple and scalable predictive uncertainty estimation using deep ensembles[J]. Advances in Neural Information Processing Systems, 2017, 30: 6402-6413.
[38] WOODWORTH B, GUNASEKAR S, LEE J D, et al. Kernel and rich regimes in overparametrized models[C] //Conference on Learning Theory. Texas, USA: PMLR, 2020: 3635-3673.
[39] QU Z, LI X, DUAN R, et al. Generalized federated learning via sharpness aware minimization[C] //International Conference on Machine Learning. Baltimore, USA: PMLR, 2022: 18250-18280.
[40] CHAUDHARI P, CHOROMANSKA A, SOATTO S, et al. Entropy-SGD:biasing gradient descent into wide valleys[J]. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019(12): 124018.
[41] KARIMIREDDY S P, KALE S, MOHRI M, et al. SCAFFOLD: stochastic controlled averaging for federated learning[C] //International Conference on Machine Learning. Texas, USA: PMLR, 2020: 5132-5143.
[42] LI T, SANJABI M, BEIRAMI A, et al. Fairresource allocation in federated learning[C] //International Conference on Learning Representations. Addis Ababa, Ethiopia: ICLR, 2020: 1-27.
[43] REISIZADEH A, FARNIA F, PEDARSANI R, et al. Robust federated learning:the case of affine distribution shifts[J]. Advances in Neural Information Processing Systems, 2020, 33: 21554-21565.
[44] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL].(2017-01-30)[2023-11-07]. https://arxiv.org/abs/1412.6980.
[45] KITAEV N, KAISER L, LEVSKAYA A. Reformer:the efficient transformer[C] //International Conference on Learning Representations. Addis Ababa, Ethiopia: ICLR, 2020: 1-12.
[1] LIU Ziyi, CUI Chaoran, MENG Fan'an, LIN Peiguang. Multi-source-free domain adaptation with batch normalization statistics [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 102-108.
[2] Yifei LI,Zunhua GUO. A Chirplet neural network for automatic target recognition [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 8-14.
[3] Mengmeng LIANG,Tao ZHOU,Yong XIA,Feifei ZHANG,Jian YANG. Lung tumor images recognition based on PSO-ConvK convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 77-84.
[4] LIU Fan, CHEN Zehua, CHAI Jing. A new multi-focus image fusion method based on deep neural network model [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 7-13.
[5] LI Xiang1, ZHU Quan-yin1, WANG Zun2. Research of wavelet neural network based on variable basis functions and GentleAdaBoost algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(5): 31-38.
[6] YIN Jian-chuan1,2, ZOU Zao-jian1,3, XU Feng1. An improved extreme learning machine based on Akaike criterion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(6): 7-11.
[7] MEI Hong,WANG Yong,ZHAO Rong-qi . Study on inverse kinematics of a robot based on an ant colony-neural network algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(5): 72-76 .
[8] ZHANG Qinyang, LI Xu, YAO Chunlong, LI Changwu. Aspect-level sentiment classification combined with syntactic dependency information [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 83-89.
[9] YU Chang, WU Xing, DENG Qiuju. Intelligent screw absence detection algorithm based on deep learning with multiple perspectives [J]. Journal of Shandong University(Engineering Science), 2023, 53(4): 104-112.
[10] WEI Xiuxi, TAO Dao, HUANG Huajuan. Optimizing BP neural network to predict gasoline octane number by improved fruit fly algorithm [J]. Journal of Shandong University(Engineering Science), 2023, 53(5): 20-28.
[11] ZHAO Ningning, TANG Xuesong, ZHAO Mingbo. Depth segment classification algorithm based on convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 22-27.
[12] DING Fei, JIANG Mingyan. Housing price prediction based on improved lion swarm algorithm and BP neural network model [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 8-16.
[13] LIU Shuai, WANG Lei, DING Xutao. Emotional EEG recognition based on Bi-LSTM [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 35-39.
[14] WANG Biyao, HAN Yi, CUI Hangbin, LIU Yichao, REN Mingran, GAO Weiyong, CHEN Shuting, LIU Jiawei, CUI Yang. Road semantic segmentation detection method based on image [J]. Journal of Shandong University(Engineering Science), 2023, 53(5): 37-47.
[15] SUN Yuan, ZENG Huiquan, OUYANG Sujian, GAO Jiaqian, WANG Qinan, LIN Zhiyong. Nonlinear system identification based on fuzzy brain emotional learning with particle swarm algorithm [J]. Journal of Shandong University(Engineering Science), 2024, 54(1): 25-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!