Journal of Shandong University(Engineering Science) ›› 2023, Vol. 53 ›› Issue (5): 20-28.doi: 10.6040/j.issn.1672-3961.0.2022.162

• Machine Learning & Data Mining • Previous Articles    

Optimizing BP neural network to predict gasoline octane number by improved fruit fly algorithm

WEI Xiuxi1, TAO Dao2, HUANG Huajuan1*   

  1. 1. School of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, Guangxi, China;
    2. College of Electronic Information, Guangxi Minzu University, Nanning 530006, Guangxi, China
  • Published:2023-10-19

CLC Number: 

  • TP183
[1] TIAGO D, RODOLFO O, PEDRO S, et al. Predictive analytics in the petrochemical industry: research octane number(RON)forecasting and analysis in an industrial catalytic reforming unit[J]. Computers and Chemical Engineering, 2020, 139: 106912.
[2] 丁怡曼,薛晓康,范宾,等. 基于PLS-红外光谱的汽油辛烷值测定方法研究[J]. 化学研究与应用, 2021, 33(5): 863-867. DING Yiman, XUE Xiaokang, FAN Bin, et al. Determination of gasoline octane number based on PLS-Infrared spectroscopy[J]. Chemical Research and Application, 2021, 33(5): 863-867.
[3] 褚小立,陈瀑,李敬岩,等. 近红外光谱分析技术的最新进展与展望[J]. 分析测试学报, 2020, 39(10): 1181-1188. CHU Xiaoli, CHEN Pu, LI Jingyan, et al. Progresses and perspectives of near infrared spectroscopy analytical technology[J]. Journal of Instrumental Analysis, 2020, 39(10): 1181-1188.
[4] 夏良. 低压环境汽油辛烷值测定技术研究[J]. 仪器仪表用户, 2021, 28(9): 6-9. XIA Liang. Study on determination of octane number of gasoline in low pressure environment[J]. Instrumen-tation, 2021, 28(9):6-9.
[5] 赵林,李希,谢永芳,等. 基于自适应变量加权的汽油辛烷值预测方法[J].控制与决策, 2022, 37(10):2738-2744. ZHAO Lin, LI Xi, XIE Yongfang, et al. Prediction method of gasoline octane number based on adaptive variable weighting[J]. Control and Decision, 2022, 37(10):2738-2744.
[6] 郑斌,孙洪霞,王维民. 基于随机森林回归的汽油研究法辛烷值预测[J]. 石油炼制与化工, 2020, 51(12):69-75. ZHENG bin, SUN Hongxia, WANG Weimin. Prediction of gasoline research octane number based on random forest regression[J]. Petroleum Procession and Petrochemical, 2020, 51(12): 69-75.
[7] 杨丰瑞,罗思烦,李前洋. 基于特征选择的极限随机森林算法研究[J]. 计算机应用研究, 2020, 37(9):2625-2628. YANG Fengrui, LUO Sifan, LI Qianyang. Research on extreme random forest algorithm based on feature selection[J]. Application Research of Computers, 2020, 37(9):2625-2628.
[8] PAN W T. A new fruit fly optimization algorithm: taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012, 26(2): 69-74.
[9] 凤丽洲,王友卫,韩琳琳,等. 双重驱动的果蝇优化算法及其在PID控制器中的应用[J]. 控制与决策, 2021, 36(9):2225-2233. FENG Lizhou, WANG Youwei, HAN Linlin, et al. Double drive fruit fly optimization algorithm and its application in PID controller[J]. Control and Decision, 2021, 36(9):2225-2233.
[10] 黄小莉,陈静娴,胡思宇. 基于自适应果蝇优化算法的K-means聚类[J]. 国外电子测量技术, 2021, 40(6):14-20. HUANG Xiaoli, CHEN Jingxian, HU Siyu. K-means clustering based on adaptive fruit fly optimization algorithm[J]. Foreign Electronic Measurement Technology, 2021, 40(6):14-20.
[11] 谭晶晶. 基于动态变步长果蝇算法优化支持向量机的轴承故障诊断方法[J]. 机械设计与研究, 2021, 37(1):102-105. TAN Jingjing. A fault diagnosis method based on SVM optimized by improved fruit fly optimization algorithm[J]. Machine Design and Research, 2021, 37(1):102-105.
[12] 石建平,刘国平,李培生,等. 双策略协同进化果蝇优化算法及其应用[J].计算机集成制造系统, 2022, 28(5):1482-1495. SHI Jianping, LIU Guoping, LI Peisheng, et al. Double strategies co-evolutionary fruit fly optimization algorithm and its application[J]. Computer Integrated Manufac-turing Systems, 2022, 28(5):1482-1495.
[13] 曾宇容,王林,王思睿.基于混合果蝇优化算法的选址-库存-配送集成优化研究[J].运筹与管理, 2022, 31(3):24-30. ZENG Yurong, WANG Lin, WANG Sirui. Integrated optimization of location-inventory-delivery problem using hybrid fruit fly optimization algorithm[J]. Operations Research and Management Science, 2022, 31(3):24-30.
[14] FAN Yibo, JIN Yize, MENG Zihao, et al. Pixels and panoramas: an enhanced cubic mapping scheme for video/image-based virtual-reality scenes[J]. IEEE Consumer Electronics Magazine, 2019, 8(2):44-49.
[15] 吴远超,舒乃秋,关向雨. 基于LSSVM和混沌理论改进人工蜂群优化算法的GIS母线接头温度预测[J]. 电测与仪表, 2018, 55(20): 8-14. WU Yuanchao, SHU Naiqiu, GUAN Xiangyu. Temperature prediction method of GIS bus connector based on improved artificial bee colony optimization LSSVM algorithm[J]. Electrical Measurement & Instrumentation, 2018, 55(20): 8-14.
[16] 张孟健,张浩,陈曦,等. 基于Cubic映射的灰狼优化算法及应用[J]. 计算机工程与科学, 2021, 43(11): 2035-2042. ZHANG Mengjian, ZHANG Hao, CHEN Xi, et al. Grey wolf optimization algorithm based on Cubic mapping and its application[J]. Computer Engineering & Science, 2021, 43(11): 2035-2042.
[17] HUANG Dongmei, HE Shiqing, HE Xuhui, et al. Prediction of wind loads on high-rise building using a BP neural network combined with POD[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 170:1-17.
[18] ALJARAH I, FARIS H, MIRJALILI S. Optimizing connection weights in neural networks using the whale optimization algorithm[J]. Soft Computing, 2018, 22(1): 1-15.
[19] 刘畅,刘天琪, 陈振寰,等. 基于KPCA和BP神经网络的短期负荷预测[J]. 电测与仪表, 2016, 53(10): 57-61. LIU Chang, LIU Tianqi, CHEN Zhenhuan, et al. Short-term power load forecasting based on kernel principal component analysis and BP neural network[J]. Electrical Measurement & Instrumentation, 2016, 53(10): 57-61.
[20] 王克杰,张瑞. 基于改进 BP 神经网络的短期电力负荷预测方法研究[J]. 电测与仪表, 2019, 56(24): 115-121. WANG Kejie, ZHANG Rui. Research on short-term power load forecasting method based on improved BP neural network[J]. Electrical Measurement & Instrumentation, 2019, 56(24): 115-121.
[1] LIU Ziyi, CUI Chaoran, MENG Fan'an, LIN Peiguang. Multi-source-free domain adaptation with batch normalization statistics [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 102-108.
[2] Yifei LI,Zunhua GUO. A Chirplet neural network for automatic target recognition [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 8-14.
[3] Mengmeng LIANG,Tao ZHOU,Yong XIA,Feifei ZHANG,Jian YANG. Lung tumor images recognition based on PSO-ConvK convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 77-84.
[4] LIU Fan, CHEN Zehua, CHAI Jing. A new multi-focus image fusion method based on deep neural network model [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 7-13.
[5] LI Xiang1, ZHU Quan-yin1, WANG Zun2. Research of wavelet neural network based on variable basis functions and GentleAdaBoost algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(5): 31-38.
[6] YIN Jian-chuan1,2, ZOU Zao-jian1,3, XU Feng1. An improved extreme learning machine based on Akaike criterion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(6): 7-11.
[7] MEI Hong,WANG Yong,ZHAO Rong-qi . Study on inverse kinematics of a robot based on an ant colony-neural network algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(5): 72-76 .
[8] ZHANG Qinyang, LI Xu, YAO Chunlong, LI Changwu. Aspect-level sentiment classification combined with syntactic dependency information [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 83-89.
[9] ZHAO Ningning, TANG Xuesong, ZHAO Mingbo. Depth segment classification algorithm based on convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 22-27.
[10] LIU Shuai, WANG Lei, DING Xutao. Emotional EEG recognition based on Bi-LSTM [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 35-39.
[11] DING Fei, JIANG Mingyan. Housing price prediction based on improved lion swarm algorithm and BP neural network model [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 8-16.
[12] YU Chang, WU Xing, DENG Qiuju. Intelligent screw absence detection algorithm based on deep learning with multiple perspectives [J]. Journal of Shandong University(Engineering Science), 2023, 53(4): 104-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!