Journal of Shandong University(Engineering Science) ›› 2021, Vol. 51 ›› Issue (6): 1-8.doi: 10.6040/j.issn.1672-3961.0.2020.429

• Mechanical Engineering—Special Topic on Ocean Engineering and Technology •    

The analysis of key parameters of hydraulic energy storage system of wave energy converter

Yingxin LIU1(),Jian QIN1,Yanjun LIU1,2,*()   

  1. 1. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, Shandong, China
    2. Key laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, Jinan 250061, Shandong, China
  • Received:2020-10-23 Online:2021-12-20 Published:2022-01-19
  • Contact: Yanjun LIU E-mail:liuyingxin0628@163.com;lyj111ky@163.com

Abstract:

To improve the efficiency of wave power generation technology, a mathematical model of the system from wave input to motor output was established. The key parameters that affected the system′s power generation capacity were analyzed by using theoretical modeling and simulating, so as to provide theoretical guidance for the research of the constant speed control strategy of the hydraulic energy conversion system. The hydraulic energy storage system of wave energy generation was composed of 3 parts. The mathematical model of the system was established by analyzing each component′s motion equation and energy equation, and finding the connection parameters between the two components. The key parameters and characteristics of the system were determined qualitatively by analyzing the system′s power equation. To confirm the accuracy of theoretical analysis, the AMEsim simulation platform was used to design and imitate the system. The results showed that the motor′s output power was affected by the height of the wave, period, flow area of the proportional flow valve and the motor displacement. The highest order of the influence was 1, 4, 4 and 2, respectively. The results also verified that the precharging pressure of the accumulator had little influence on the motor′s output power.

Key words: wave energy conversion, hydraulic energy storage, analytical model, simulation platform, operating parameter of component

CLC Number: 

  • P74

Fig.1

Schematic diagram of the wave energy converter"

Fig.2

Sketch of a buoy placed in the waves"

Fig.3

Analysis of the wave force applied to buoy-piston"

Table 1

Key parameters of the buoy"

外径D1/m 内径D2/m 总高L/m 吃水深度d/m 质量mt/kg
3.21 1.61 1.00 0.50 3 115.12

Fig.4

Simulation model of the wave energy converter"

Fig.5

Pressure curves of systems"

Fig.6

Curve of power over time"

Fig.7

Varying curve of power over H"

Fig.8

Varying curve of power over pg0"

Fig.9

Varying curve of power over Tperiod"

Fig.10

Varying curve of power over DM"

Fig.11

Varying curve of power over AF"

1 沈利生, 张育宾. 海洋波浪能发电技术的发展与应用[J]. 能源研究与管理, 2010, (4): 55- 58.
SHEN Lisheng , ZHANG Yubin . Development and application of the power generation technology of oceanic wave[J]. Energy Research and Management, 2010, (4): 55- 58.
2 MCCORMICK M E . Ocean wave energy conversion[J]. Renewable Energy, 1986, 1 (11): 1309- 1319.
3 刘延俊, 王伟, 陈志, 等. 波浪能发电装置浮体形状参数对俘能性能影响[J]. 山东大学学报(工学版), 2020, 50 (6): 1- 8.
LIU Yanjun , WANG Wei , CHEN Zhi , et al. The influence of shape parameters of wave energy device floating body on energy capture characteristics[J]. Journal of Shandong University (Engineering Science), 2020, 50 (6): 1- 8.
4 黄淑亭, 翟晓宇, 刘延俊, 等. 淹没深度对三自由度波能浮子获能的影响[J]. 山东大学学报(工学版), 2020, 50 (6): 17- 22.
HUANG Shuting , ZHAI Xiaoyu , LIU Yanjun , et al. Comparative study of the floating and submerged three-freedom oscillating body wave energy converters[J]. Journal of Shandong University (Engineering Science), 2020, 50 (6): 17- 22.
5 ZHANG D H , AGGIDIS G , WANG Y F , et al. Wave tank experiments on the power capture of a multi-axis wave energy converter[J]. Journal of Marine Science and Technology, 2015, 20 (3): 520- 529.
doi: 10.1007/s00773-015-0306-5
6 ZHANG D H , AGGIDIS G , WANG Y F , et al. Experimental results from wave tank trials of a multi-axis wave energy converter[J]. Applied Physics Letters, 2013, 103 (10): 103901- 103904.
doi: 10.1063/1.4820435
7 NGUYEN H P , WANG C M , PEDROSO D M . Optimization of modular raft WEC-type attachment to VLFS and module connections for maximum reduction in hydro-elastic response and wave energy production[J]. Ocean Engineering, 2019, 172, 407- 421.
doi: 10.1016/j.oceaneng.2018.12.014
8 高辉. 振荡浮子式波浪发电装置最佳功率控制研究[D]. 广州: 华南理工大学, 2012.
GAO Hui. Research on optimal power tracking of oscillation-buoy wave energy device[D]. Guangzhou: South China University of Technology, 2012.
9 漆焱. 波浪能发电过程模拟及电能转换稳定性研究[D]. 济南: 山东大学, 2019.
QI Yan. Simulation of wave energy generation process and stability of electric energy conversion[D]. Jinan: Shandong University, 2019.
10 王坤林, 田联房, 王孝洪, 等. 液压蓄能式波浪能装置发电系统的特性[J]. 华南理工大学学报(自然科学版), 2014, 42 (6): 25- 31.
WANG Kunlin , TIAN Lianfang , WANG Xiaohong , et al. Characteristics of power generation system with hydraulic energy-storage wave energy converter[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42 (6): 25- 31.
11 管士飞. 海上漂浮式波浪能转换系统测试及性能优化研究[D]. 大连: 大连海事大学, 2012.
GUAN Shifei. The testing and performance optimization of the floating wave energy conversion system[D]. Dalian: Dalian Maritime University, 2012.
12 张伟. 液压波浪能发电装置稳定性及控制策略研究[D]. 济南: 山东大学, 2018.
ZHANG Wei. Study on stability and control strategy of hydraulic wave power generation device[D]. Jinan: Shandong University, 2018.
13 华军, 李德堂, 陈丽雪, 等. 基于蓄能器的液压传动系统研究[J]. 海洋开发与管理, 2019, 36 (12): 80- 84.
HUA Jun , LI Detang , CHEN Lixue , et al. Hydraulic transmission system based on accumulator[J]. Ocean Development and Management, 2019, 36 (12): 80- 84.
14 姚琦, 王世明, 胡海鹏. 波浪能发电装置的发展与展望[J]. 海洋开发与管理, 2016, 33 (1): 86- 92.
YAO Qi , WANG Shiming , HU Haipeng . On the development and prospect of wave energy power generation device[J]. Ocean Development and Management, 2016, 33 (1): 86- 92.
15 石世宁, 訚耀保. 摆式海洋波浪能量转换原理与应用[J]. 液压气动与密封, 2013, 33 (1): 1- 5.
SHI Shining , YIN Yaobao . Principle and application of pendulum ocean wave power generation[J]. Hydraulics Pneumatics & Seals, 2013, 33 (1): 1- 5.
16 张家明, 黎明, 张帅, 等. 100 kW组合型振荡浮子式波浪发电装置能量转换系统研究[J]. 太阳能学报, 2017, 38 (12): 3355- 3362.
ZHANG Jiaming , LI Ming , ZHANG Shuai , et al. Energy conversion system research of 100 kW combined oscillating float wave power plant[J]. Acta Solar Energy, 2017, 38 (12): 3355- 3362.
17 梁双令. 液压蓄能式波浪发电装置的运动分析与控制[D]. 哈尔滨: 哈尔滨工程大学, 2016.
LIANG Shuangling. Motion analysis and control of hydraulic energy storge type wave energy converter[D]. Harbin: Harbin Engineering University, 2016.
18 段春明, 朱永强. 一种新型振荡水柱式波浪能发电装置的设计[J]. 上海海洋大学学报, 2013, (3): 446- 451.
DUAN Chunming , ZHU Yongqiang . Design of a new OWC wave power generation device[J]. Journal of Shanghai Ocean University, 2013, (3): 446- 451.
19 单长飞. 单浮子式波浪能发电装置的水动力性能研究[D]. 镇江: 江苏科技大学, 2013.
SHAN Changfei. Hydrodynamic performance research of a single float type wave power conversion device[D]. Zhenjiang: Jiangsu University of Science and Techno-logy, 2013.
20 宋志安. 基于MATLAB的液压伺服控制系统分析与设计[M]. 北京: 国防工业出版社, 2007.
SONG Zhian . Analysis and design of hydraulic servo control system based on MATLAB[M]. Beijing: National Defense Industry Press, 2007.
[1] TIAN Li,Wenzhe BI,Sarim Saleem SIDDIQUI,Kaiyue LIU. Review on structural resistance to downburst wind loads [J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 32-41.
[2] Yanjun LIU,Shuang WU,Dengshuai WANG,Ruohong WANG. Research progress of ocean wave energy converters [J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 63-75.
[3] SUN Xiang-hua. The improvement of wireless sensor networks routing algorithm based on the distance vector simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(6): 25-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!