### Sliding mode synchronization of fractional-order Rucklidge systems with unknown parameters based on a new type of reaching law

WANG Chunyan1, DI Jinhong1, MAO Beixing2

1. 1. School of Intelligent Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450015, Henan, China;
2. College of Mathemtics, Zhengzhou University of Aeronautics, Zhengzhou 450015, Henan, China
• Published:2020-08-13

Abstract: The problem of self-adaptive sliding mode synchronization of uncertainty fractional-order Rucklidge systems based on a new reaching law was studied with the fractional-order calculus theory. The sufficient conditions were concluded for drive-response systems to get sliding mode chaos synchronization by sliding mode approach. It was proved that drive-response systems were chaos synchronization under proper controllers and sliding mode function. Numerical simulations results verified the feasibility and effectiveness of the proposed method.

CLC Number:

• O415.5
 [1] 刘雯,常艳娜,赵静一,等.一类三维混沌系统的错位跟踪同步[J].内蒙古农业大学学报(自然科学版),2017,38(1):70-74. LIU Wen, CHANG Yanna, ZHAO Jingyi, et al. Dislocated tracking synchronization of a three dimensional chaotic system[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2017, 38(1):70-74.[2] 金世欣,张毅.基于Caputo 分数阶导数的含时滞的非保守系统动力学的Noether对称性[J]. 中山大学学报(自然科学版),2015,54(5):24-31. JIN Shixin, ZHANG Yi. Noether symmetries for non-conservative Lagrange systems with time delay based on Caputo fractional derivative[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2015, 54(5):24-31.[3] ZHANG Y. Fractional differential equations of motion interms of combined riemann-liouville derivatives[J]. Chinese Physics B, 2012, 8(21): 302-306.[4] SALARIEH H, ALASTY A. Adaptive synchronization of two chaotic systems with stochastic unknown parameters[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(2): 508-519.[5] SUN Y P, LI J M, WANG J A, et al. Generalized projective synchronization of chaotic systems via adaptive learning control[J]. Chinese Physics B, 2010, 19(2):502-505.[6] LIU P, LIU S. Robust adaptive full state hybrid synchronization of chaotic complex systems with unknown parameters and external disturbances[J]. Nonlinear Dynamics, 2012, 70(1):585-599.[7] YANG L, YANG J. Robust finite-time convergence of chaotic systems via adaptive terminal sliding mode scheme[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(6): 2405-2413.[8] SHAHIRI M, GHADRI R, RANJBAR N, et al. Chaotic fractional-order coullet system: synchronization and control approach[J]. Commun Nonlinear Sci Numer Simul, 2010, 15: 665-674.[9] HAMAMCI, KOLKSAL M. Calculation of all stabilizing fractional-order PD controllers for integrating time delay systems[J]. Computer Mathematiucs Appllication, 2010, 15: 1267-1278.[10] MATOUK A. Chaos feedback and synchronization of fractional-order modified autonomous Van der pol-Duffling circuit[J]. Communication Nonlinear Science and Numerical Simulation, 2011, 16: 975-986.[11] MOHAMMAD P A. Robust finite-time stabilization of fractional-order chaotic susyems based on fractional Lyapunov stability theory[J]. Journal of Computation and Nonlinear Dynamics, 2012, 7: 1011-1015.[12] MILAD M, HADI D. Synchronization of fractional order hyper-chaotic systems based on a new adaptive sliding mode control[J]. International Journal of Dynamics Control, 2015, 10(7): 435-446.[13] DELAVARI H, GHADERI R, RANJBAR A, et al. Fuzzy fractional order sliding mode controller for nonlinear systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(4): 963-978.[14] 毛北行,李巧利.一类分数阶Duffling-Van der pol系统的混沌同步[J].吉林大学学报(理学版),2016,54(2):369-373. MAO Beixing, LI Qiaoli. Chaos synchronization of a class of fractional-order Duffling-Van der pol systems[J].Journal of Jilin University(Science Edition), 2016, 54(2):369-373.[15] DADRAS S,MOMENI H R. Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1):367-377.[16] 毛北行,王东晓.分数阶Van der pol振子网络的混沌同步[J].华中师范大学学报(自然科学版),2016,50(2):202-205. MAO Beixing, WANG Dongxiao. Chaos synchronization of fractional-order Van der pol oscillators network systems[J].Journal of Central China Normal University(Natural Science), 2016, 50(2): 202-205.[17] 周涛.基于一种新型趋近律的自适应滑模控制[J]. 控制与决策,2016,31(7):1335-1338. ZHOU Tao. Adaptive sliding control based on a new reaching law[J]. Control and Decision, 2016, 31(7):1335-1338.[18] POD L. Fractional differential equation[M]. San Diego, USA: Academic Press, 1999: 715-719.[19] 梅生伟,申铁龙,刘志康.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2003.[20] 胡建兵,赵灵冬.分数阶系统稳定性理论与控制研究[J].物理学报,2013,62(24):5041-5047. HU Jianbing, ZHAO Lingdong. Research of stability theory of fractional-order systems and control[J]. Acta Phys Sin, 2013, 62(24): 5041-5047.
 [1] MENG Xiaoling, WANG Jianjun. Chaos synchronization of a class of fractional-order coronary artery systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 55-60. [2] MAO Beixing, CHENG Chunrui. Self-adaptive sliding mode control of fractional-order Victor-Carmen chaotic systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(4): 31-36. [3] MAO Beixing, WANG Dongxiao. Sliding model chaos synchronization control of a class of fractional-order multi-scroll systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 79-83. [4] LI Qingbin, WANG Xiaodong. Terminal sliding model control chaos synchronization of fractional-order emotion mode systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 84-88. [5] JIN Xin,JIANG Ming-yan . Chaos synchronization control for a new chaotic system with diverse structures base on nonlinear control [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(5): 78-82 .
Viewed
Full text

Abstract

Cited

Shared
Discussed
 No Suggested Reading articles found!