Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (3): 133-142.doi: 10.6040/j.issn.1672-3961.0.2019.009
• Others • Previous Articles
Hongbin LIU1,2(),Qiyue WU1,Liu SONG1
CLC Number:
1 | OLSSON G , NEWELL B . Wastewater treatment systems, modeling, diagnosis and control[M]. Britain, London: IWA Publishing, 1999. |
2 | SHEN Wenhao , CHEN Xiaoquan , CORRIOU J P . Application of model predictive control to the BSM1 benchmark of wastewater treatment process[J]. Computers & Chemical Engineering, 2008, 32 (12): 2849- 2856. |
3 |
黄银蓉, 张绍德. MIMO最小二乘支持向量机污水处理在线软测量研究[J]. 自动化与仪器仪表, 2010, (4): 15- 17.
doi: 10.3969/j.issn.1001-9227.2010.04.006 |
HUANG Yinrong , ZHANG Shaode . Online soft measurement for wastewater treatment based on MIMO least squares support vector machine[J]. Automation & Instrumentation, 2010, (4): 15- 17.
doi: 10.3969/j.issn.1001-9227.2010.04.006 |
|
4 |
王欣, 宋翼颉, 秦斌, 等. 基于LSSVM的污水处理过程建模[J]. 湖南工业大学学报, 2016, 30 (1): 59- 63.
doi: 10.3969/j.issn.1673-9833.2016.01.011 |
WANG Xin , SONG Yijie , QIN Bin , et al. Modeling of sewage treatment process based on MIMO-LSSVM[J]. Journal of Hunan University of Technology, 2016, 30 (1): 59- 63.
doi: 10.3969/j.issn.1673-9833.2016.01.011 |
|
5 | 汪瑶, 徐亮, 殷文志, 等. 基于ANN和LSSVR的造纸废水处理过程软测量建模[J]. 中国造纸学报, 2017, 32 (1): 50- 54. |
WANG Yao , XU Liang , YIN Wenzhi , et al. Soft sensor modeling of papermaking treatment processes based on ANN and LSSVR[J]. Transactions of China Pulp and Paper, 2017, 32 (1): 50- 54. | |
6 |
宋留, 杨冲, 张辉, 等. 造纸废水处理过程的高斯过程回归软测量建模[J]. 中国环境科学, 2018, 38 (7): 2564- 2571.
doi: 10.3969/j.issn.1000-6923.2018.07.023 |
SONG Liu , YANG Chong , ZHANG Hui , et al. Soft-sensor modeling of papermaking wastewater treatment process based on Gaussian process[J]. China Environmental Science, 2018, 38 (7): 2564- 2571.
doi: 10.3969/j.issn.1000-6923.2018.07.023 |
|
7 |
KOHAVI R , JOHN G H . Wrappers for feature subset selection[J]. Artificial Intelligence, 1997, 97 (1-2): 273- 324.
doi: 10.1016/S0004-3702(97)00043-X |
8 |
MALDONADO S , WEBER R , FAMILI F . Feature selection for high-dimensional class-imbalanced data sets using support vector machines[J]. Information Sciences, 2014, 286, 228- 246.
doi: 10.1016/j.ins.2014.07.015 |
9 |
MALDONADO S , LÓPEZ J . Dealing with high-dimensional class-imbalanced datasets: embedded feature sele-ction for SVM classification[J]. Applied Soft Com-puting, 2018, 67, 94- 105.
doi: 10.1016/j.asoc.2018.02.051 |
10 | ANDERSEN C M , BRO R . Variable selection in regression: a tutorial[J]. Journal of Chemometrics, 2010, 24 (11/12): 728- 737. |
11 |
SHAHRIARI S , FARIA S , GONÇCALVES A M . Variable selection methods in high-dimensional regre-ssion: a simulation study[J]. Communications in Statistics-Simulation and Computation, 2015, 44 (10): 2548- 2561.
doi: 10.1080/03610918.2013.833231 |
12 |
DUPUIS D J , VICTORIA F M . Robust VIF regression with application to variable selection in large data sets[J]. The Annals of Applied Statistics, 2013, 7 (1): 319- 341.
doi: 10.1214/12-AOAS584 |
13 | 王树云, 宋云胜. 线性模型下基于AIC准则的Bayes变量选择[J]. 山东大学学报(理学版), 2010, 45 (6): 43- 45. |
WANG Shuyun , SONG Yunsheng . Bayesian variable selection based on AIC criteria in linear models[J]. Journal of Shandong University (Natural Science), 2010, 45 (6): 43- 45. | |
14 |
杨慧中, 章军, 陶洪峰. 基于互信息的软测量变量选择[J]. 控制工程, 2012, 19 (4): 562- 565.
doi: 10.3969/j.issn.1671-7848.2012.04.004 |
YANG Huizhong , ZHANG Jun , TAO Hongfeng . A variable selection for soft sensor based on mutual information[J]. Control Engineering of China, 2012, 19 (4): 562- 565.
doi: 10.3969/j.issn.1671-7848.2012.04.004 |
|
15 |
朱群雄, 郎娜. 工业软测量模型结构与输入变量选择的研究[J]. 控制工程, 2011, 18 (3): 388- 392.
doi: 10.3969/j.issn.1671-7848.2011.03.017 |
ZHU Qunxiong , LANG Na . Research on model structure and input variable selection for industry soft sensing[J]. Control Engineering of China, 2011, 18 (3): 388- 392.
doi: 10.3969/j.issn.1671-7848.2011.03.017 |
|
16 |
WAN J , HUANG M , MA Y , et al. Prediction of effluent quality of a paper mill wastewater treatment using an adaptive network-based fuzzy inference system[J]. Applied Soft Computing, 2011, 11 (3): 3238- 3246.
doi: 10.1016/j.asoc.2010.12.026 |
17 | CHONG I-G , JUN C-H . Performance of some variable selection methods when multicollinearity is present[J]. Chemometrics and Intelligent Laboratory Systems, 2005, 78 (1/2): 103- 112. |
18 | FARRÉ M , PLATIKANOV S , TSAKOVSKI S , et al. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation[J]. Journal of Chemometrics, 2015, 29 (10): 528- 536. |
19 |
韩放, 吴晶辰, 徐江峰, 等. 利用PLS-VIP方法筛选差异表达基因[J]. 北京大学学报(自然科学版), 2009, 45 (1): 1- 5.
doi: 10.3321/j.issn:0479-8023.2009.01.001 |
HAN Fang , WU Jingchen , XU Jiangfeng , et al. Searching for differentially expressed genes by PLS-VIP method[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45 (1): 1- 5.
doi: 10.3321/j.issn:0479-8023.2009.01.001 |
|
20 |
刘国海, 程锦翔, 丁煜函, 等. 青霉素发酵过程中基于PLS-VIP的神经网络逆软测量方法[J]. 计算机与应用化学, 2013, 30 (11): 1294- 1298.
doi: 10.3969/j.issn.1001-4160.2013.11.012 |
LIU Guohai , CHEN Jinxiang , DING Yuhan , et al. Neural network inverse soft-sensing method based on PLS-VIP in penicillin fermentation process[J]. Computers and Applied Chemistry, 2013, 30 (11): 1294- 1298.
doi: 10.3969/j.issn.1001-4160.2013.11.012 |
|
21 |
阎威武, 邵惠鹤. 支持向量机和最小二乘支持向量机的比较及应用研究[J]. 控制与决策, 2003, 18 (3): 358- 360.
doi: 10.3321/j.issn:1001-0920.2003.03.025 |
YAN Weiwu , SHAO Huihe . Application of support vector machines and least squares support vector machines to heart disease diagnoses[J]. Control and Decision, 2003, 18 (3): 358- 360.
doi: 10.3321/j.issn:1001-0920.2003.03.025 |
|
22 | 丁兰, 张文阳, 张良均, 等. 基于人工神经网络的居民生活垃圾可燃成分热值预测[J]. 环境工程学报, 2016, 10 (2): 899- 905. |
DING Lan , ZHANG Wenyang , ZHANG Liangjun , et al. Prediction of household waste combustible component calorific value based on artificial neural network[J]. Chinese Journal of Environmental Engineering, 2016, 10 (2): 899- 905. | |
23 | 严文峰, 李晓东, 高智花, 等. 污泥厌氧消化的人工神经网络模型[J]. 环境工程学报, 2015, 9 (5): 2425- 2429. |
YAN Wenfeng , LI Xiaodong , GAO Zhihua , et al. Artificial neural network model of sludge anaerobic digestion[J]. Chinese Journal of Environmental Engineering, 2015, 9 (5): 2425- 2429. | |
24 | 张恒德, 张庭玉, 李涛, 等. 基于BP神经网络的污染物浓度多模式集成预报[J]. 中国环境科学, 2018, 38 (4): 1243- 1256. |
ZHANG Hengde , ZHANG Tingyu , LI Tao , et al. Forecast of air quality pollutants' concentrations based on BP neural network multi-model ensemble method[J]. China Environmental Science, 2018, 38 (4): 1243- 1256. | |
25 |
薛美盛, 冀若阳, 王旭. 基于多元线性回归与滚动窗的NOx排放量软测量[J]. 化工自动化及仪表, 2017, 44 (8): 721- 724.
doi: 10.3969/j.issn.1000-3932.2017.08.002 |
XUE Meisheng , JI Ruoyang , WANG Xu . Soft sensor for NOx emissions based on multiple linear regression and sliding window[J]. Control and Instruments in Chemical Industry, 2017, 44 (8): 721- 724.
doi: 10.3969/j.issn.1000-3932.2017.08.002 |
|
26 | HWANG J S , HU T H . A stepwise regression algorithm for high-dimensional variable selection[J]. Journal of Statistical Computation & Simulation, 2015, 85 (9): 1793- 1806. |
27 | MA Mingda , KO J W , WANG S J , et al. Development of adaptive soft sensor based on statistical identification of key variables[J]. Control Engineering Practice, 2008, 17 (9): 1026- 1034. |
[1] | Hongbin LIU,Liu SONG. Study on modeling methods of wastewater treatment processes with canonical correlation analysis [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 101-108. |
[2] | Run XIANG,Sufen CHEN,Xueqiang ZENG. Facial age estimation based on multivariate multiple regression [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 54-60. |
[3] | YE Xiaofeng, WANG Peiliang, YANG Zeyu. Quality prediction method based on hybrid MPLS for multiphases process [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 246-253. |
[4] | SUN Cuiping, ZHOU Weizhi, ZHAO Haixia. Efficiency and mechanism of ferric salt enhanced biological phosphorus removal [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(2): 82-88. |
[5] | FANG Li-ying, LI Shuang, WANG Pu, CHEN Pei-yu. The application of varying coefficient model in the study of medical longitudinal data [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(6): 21-26. |
[6] | RAO Min1, LI Yan-hong1, CHEN Wei-hua1, SONG Jian-bo2, CHEN Guang-da1, LIU Xiao-zuo1. Study on the treatment of diazodinitrophenol industrial wastewater [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(6): 100-106. |
[7] | YU Feng-jun, SHI Lai-shun*. Manganese dioxide catalytic oxidation with chlorine dioxide as an oxidant of simulated wastewater containing acid chrome blue K [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(2): 88-94. |
[8] | DONG Zeng-Shou, LIU Ming-Jun. The application improvement of PLS in boiler NOx emissions testing [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(1): 126-128. |
|