Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (4): 14-23.doi: 10.6040/j.issn.1672-3961.0.2018.461
• Machine Learning & Data Mining • Previous Articles Next Articles
CLC Number:
1 |
魏全禄, 老松杨, 白亮. 基于相关滤波器的视觉目标跟踪综述[J]. 计算机科学, 2016, 43 (11): 1- 5, 18.
doi: 10.11896/j.issn.1002-137X.2016.11.001 |
WEI Quanlu , LAO Songyang , BAI Liang . Visual object tracking based on correlation filters: a survey[J]. Journal of Computer Science, 2016, 43 (11): 1- 5, 18.
doi: 10.11896/j.issn.1002-137X.2016.11.001 |
|
2 | 包加桐, 宋爱国, 唐鸿儒, 等. 基于视觉目标跟踪的侦察机器人导航方法[J]. 东南大学学报(自然科学版), 2012, 42 (3): 399- 405. |
BAO Jiangtong , SONG Aiguo , TANG Hongru , et al. Navigation method for reconnaissance robot based on vision object tracking[J]. Journal of Southeast University (Natural science edition), 2012, 42 (3): 399- 405. | |
3 | 张微, 康宝生. 相关滤波目标跟踪进展综述[J]. 中国图象图形学报, 2017, 22 (8): 1017- 1033. |
ZHANG Wei , KANG Baosheng . Recent advances in correlation filter-based object tracking: a review[J]. Journal of Image and Graphics, 2017, 22 (8): 1017- 1033. | |
4 | COOKE J R H , TER HORST A C , VAN Beers R J , et al. Effect of depth information on multiple-object tracking in three dimensions: a probabilistic perspective[J]. PLoS Computational Biology, 2017, 13 (7): 100- 109. |
5 | ONATE J M B , CHIPANTASI D J M , ERAZO N R V . Tracking objects using artificial neural networks and wireless connection for robotics[J]. Journal of Telecommunication, Electronic and Computer engineering (JTEC), 2017, 9 (1/2/3): 161- 164. |
6 |
冯桂兰, 田维坚, 黄昌清, 等. 基于序贯蒙特卡罗的多线索目标跟踪算法[J]. 光电工程, 2010, 37 (8): 5- 11.
doi: 10.3969/j.issn.1003-501X.2010.08.002 |
FENG Guilan , TIAN Weijian , HUANG Changqing , et al. Object tracking algorithm based on multi-cue and sequential Monte Carlo[J]. Opto-Electronic Engineering, 2010, 37 (8): 5- 11.
doi: 10.3969/j.issn.1003-501X.2010.08.002 |
|
7 |
梁顺健, 汪俊彬, 邬依林. 基于模糊算法的多移动机器人目标跟踪[J]. 自动化与仪表, 2014, 29 (2): 5- 7, 37.
doi: 10.3969/j.issn.1001-9944.2014.02.002 |
LIANG Shunjian , WANG Junbin , WU Yilin . Fuzzy algorithm of target tracking control for multiple mobile robots[J]. Automation and Instrumentation, 2014, 29 (2): 5- 7, 37.
doi: 10.3969/j.issn.1001-9944.2014.02.002 |
|
8 |
刘文强, 刘志刚, 耿肖, 等. 基于均值漂移和粒子滤波算法的接触网几何参数检测方法研究[J]. 铁道学报, 2015, 37 (11): 30- 36.
doi: 10.3969/j.issn.1001-8360.2015.11.005 |
LIU Wenqiang , LIU Zhigang , GENG Xiao , et al. Research on detection method for geometrical parameters of catenary system based on mean shift and particle filter algorithm[J]. Journal of the China Railway Society, 2015, 37 (11): 30- 36.
doi: 10.3969/j.issn.1001-8360.2015.11.005 |
|
9 | JIA C, WANG Z, WU X, et al. A tracking-learning-detection (TLD) method with local binary pattern improved[C]//IEEE International Conference on Robotics and Biomimetics (ROBIO). Waterloo, Canada: IEEE, 2015: 1625-1630. |
10 |
YAO R , SHI Q , SHEN C , et al. Part-based robust tracking using online latent structured learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27 (6): 1235- 1248.
doi: 10.1109/TCSVT.2016.2527358 |
11 | BIN OMRAN S , KOMEV I A , BELLAICHE L . Wang-Landau Monte Carlo formalism applied to ferroelectrics[J]. Physical Review b, 2016, 93 (1): 141- 148. |
12 |
刘磊. 基于改进卷积神经网络的在线视觉目标跟踪方法[J]. 内蒙古师范大学学报(自然科学汉文版), 2017, 46 (6): 878- 883.
doi: 10.3969/j.issn.1001-8735.2017.06.026 |
LIU Lei . Online visual target tracking method based on improved convolution neural network[J]. Journal of Inner Mongolia Normal University(Natural Science Chinese Edition), 2017, 46 (6): 878- 883.
doi: 10.3969/j.issn.1001-8735.2017.06.026 |
|
13 | LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015, 521 (53): 436- 438. |
14 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778. |
15 | 张冬妍, 李佳佳, 宋现铭. 基于二维熵和粒子群优化的红外检测与跟踪[J]. 计算机工程与设计, 2017, 38 (5): 1296- 1300. |
ZHANG Dongyan , LI Jiajia , SONG Xianming . Infrared detection and tracking based on two-dimensional entropy and particle swarm optimization[J]. Computer Engineering and Design, 2017, 38 (5): 1296- 1300. | |
16 | 郭学卫, 申永军, 杨绍普. 基于样本熵和分数阶傅里叶变换的滚动轴承故障特征提取[J]. 振动与冲击, 2017, 36 (18): 65- 69. |
GUO Xuewei , SHEN Yongjun , YANG Shaopu . Application of sample entropy and Fractional fourier transform in the fault diagnosis of rolling bearings[J]. Journal of Vibration and Shock, 2017, 36 (18): 65- 69. | |
17 | FIGUEROA A , LOPEZ J , CASTANOS O , et al. Entropy energy inequalities for qudit states[J]. Journal of Physics a: Mathematical and Theoretical, 2015, 48 (6): 653- 659. |
18 |
HENRIQUES J F , CASEIRO R , MARTINS P , et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 583- 596.
doi: 10.1109/TPAMI.2014.2345390 |
19 | DANELLJAN M, HAGER G, KHAN F, et al. Accurate scale estimation for robust visual tracking[C]//British Machine Vision Conference. Nottingham, UK: BMVA Press, 2014: 141-144. |
20 | DANELLJAN M, HAGER G, SHAHBAZ KHAN F, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Los Angles: IEEE, 2015: 4310-4318. |
21 | ZHANG J, MA S, SCLAROFF S. MEEM: robust tracking via multiple experts using entropy minimization[C]//European Conference on Computer Vision. Zurich: Springer, 2014: 188-203. |
22 | HARE S, SAFFARI A, STRUCK P H S T. Structured output tracking with kernels[C]//IEEE International Conference on Computer Vision. Sydney: IEEE, 2012: 263-270. |
23 | JIA X, LU H, YANG M H. Visual tracking via adaptive structural local sparse appearance model[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2012: 1822-1829. |
24 | ZHONG W, LU H, YANG M H. Robust object tracking via sparsity-based collaborative model[C]//2012 IEEE Conference on Computer vision and pattern recognition. San Diego: IEEE, 2012: 1838-1845. |
25 | BAO C, WU Y, LING H, et al. Real time robust l1 tracker using accelerated proximal gradient approach[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2012: 1830-1837. |
26 | ZHANG K, ZHANG L, YANG M H. Real-time compressive tracking[C]//European Conference on Computer Vision. Heidelberg: Springer, 2012: 864-877. |
[1] | WANG Haijun, GE Hongjuan, ZHANG Shengyan. Object tracking via L1 norm and least soft-threshold square [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 14-22. |
[2] | LI Wu, HOU Zhiqiang*, WEI Guojian, YU Wangsheng. Algorithm of scale change objects tracking with adaptive bandwidth [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(2): 28-34. |
|