Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (4): 1-7.doi: 10.6040/j.issn.1672-3961.0.2018.275

• Machine Learning & Data Mining •     Next Articles

An automatic reading method for pointer meter

Yanghao ZHOU(),Yifan LIU,Li LI   

  1. State Key Laboratory for Novel Software Technology at Nanjing University, Nanjing University, Nanjing 210023, Jiangsu, China
  • Received:2018-07-06 Online:2019-08-20 Published:2019-08-06
  • Supported by:
    国家自然科学基金面上项目(61673204);国家电网公司科技项目(SGLNXT00DKJS1700166)

Abstract:

An automatic reading method for automatically monitoring pointer meter in substation was proposed based on the machine learning and image processing algorithms, which was consisted of two stages: meter detection and pointer recognition. The position of the meter in the input image was detected by using the fully convolutional networks, and then the patch of the meter was extracted. The interference of illumination and shadow on the pointer recognition was reduced by using histogram equalization, median filtering and bilateral filtering, and the tilt of shooting was rectified by using the affine transformation. The position of the pointer was detected via the improved Hough transform. The reading was obtained by computing the angle of the pointer. The results showed that the method could detect the pointer meter and recognize the reading accurately for the pointer instrument in the substation. The method showed good robustness to the disturbances such as illumination and shadow, which could significantly reduce the substation inspection personnel workload and improve the work efficiency.

Key words: pointer meter, semantic segmentation, FCN, affine transformation, Hough transform

CLC Number: 

  • TP319.4

Fig.1

The architecture of the fully convolutional network"

Fig.2

The example of the original input image"

Fig.3

The loss function curves during training"

Table 1

The average precision of network Ⅰ and network Ⅱon the training dataset and the validation dataset"

网络 训练集平均精度/% 验证集平均精度/%
91.558 7 91.478 9
91.704 6 91.738 9

Fig.4

Results of meter detection"

Fig.5

Results of pointer recognition"

1 陶冰洁, 韩佳乐, 李恩. 一种实用的指针式仪表读数识别方法[J]. 光电工程, 2011, 38 (4): 145- 150.
doi: 10.3969/j.issn.1003-501X.2011.04.025
TAO Bingjie , HAN Jiale , LI En . A practical pointer meter reading recognition method[J]. Opto-Electronic Engineering, 2011, 38 (4): 145- 150.
doi: 10.3969/j.issn.1003-501X.2011.04.025
2 蒋薇.基于图像识别的指针式仪表数据处理终端研究[D].青岛:青岛大学, 2014.
JIANG Wei. Research on pointer instrument data processing terminal based on image recognition[D]. Qingdao: Qingdao University, 2014.
3 赵菁.基于图像处理的指针式仪表识别设计[D].西安:西安电子科技大学, 2011.
ZHAO Jing. Pointer type instrument recognition design based on image processing[D]. Xi′an: Xidian University, 2011.
4 孙琳, 王永东. 指针式仪表自动检定系统图像识别技术[J]. 现代电子技术, 2011, 34 (8): 101- 104.
doi: 10.3969/j.issn.1004-373X.2011.08.032
SUN Lin , WANG Yongdong . Pointer meter automatic verification system image recognition technology[J]. Modern Electronics Technique, 2011, 34 (8): 101- 104.
doi: 10.3969/j.issn.1004-373X.2011.08.032
5 徐洋. 基于图像处理的汽车指针仪表检测研究[J]. 计算机应用与软件, 2014, 31 (8): 219- 221.
doi: 10.3969/j.issn.1000-386x.2014.08.054
XU Yang . Research on vehicle pointer instrument detection based on image processing[J]. Computer Applications and Software, 2014, 31 (8): 219- 221.
doi: 10.3969/j.issn.1000-386x.2014.08.054
6 何智杰, 张彬. 高精度指针仪表自动读数识别方法[J]. 计算机辅助工程, 2006, 15 (3): 9- 12.
doi: 10.3969/j.issn.1006-0871.2006.03.003
HE Zhijie , ZHANG Bin . High-precision pointer meter automatic reading recognition method[J]. Computer Aided Engineering, 2006, 15 (3): 9- 12.
doi: 10.3969/j.issn.1006-0871.2006.03.003
7 王瑞, 李琦. 一种基于改进角度法的指针式仪表图像自动读数方法[J]. 电测与仪表, 2013, 50 (11): 115- 118.
doi: 10.3969/j.issn.1001-1390.2013.11.026
WANG Rui , LI Qi . Pointer type instrument image automatic reading method based on improved angle method[J]. Electrical Measurement & Instrumentation, 2013, 50 (11): 115- 118.
doi: 10.3969/j.issn.1001-1390.2013.11.026
8 朱海霞. 基于改进Hough变换和BP网络的指针仪表识别[J]. 电测与仪表, 2015, 52 (5): 11- 14.
doi: 10.3969/j.issn.1001-1390.2015.05.003
ZHU Haixia . Pointer meter recognition based on improved Hough transform and BP network[J]. Electrical Measurement & Instrumentation, 2015, 52 (5): 11- 14.
doi: 10.3969/j.issn.1001-1390.2015.05.003
9 RE NS , HE K , GIRSHICK R . Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39 (6): 1440- 1448.
10 LIU WEI, ANGUELOV DRAGOMIR, ERHAN DUMITRU. SSD: single shot multibox detector[C]//European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
11 REDMON JOSEPH, DIVVALA SANTOSH, GIRSHICK ROSS, et al. You only look once: unified, real-time object detection[C]// The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2016: 779-788.
12 HE KAIMING, GKIOXARI GEORGIA, DOLLÁR PIOTR, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). Seattle, USA: IEEE, 2017: 2980-2988.
13 RONNEBERGER Olaf, FISCHER Philipp, BROX Thomas. U-Net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241.
14 CHEN Liang , PAPANDREOU George , KOKKINOS Iasonas , et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 834- 848.
doi: 10.1109/TPAMI.2017.2699184
15 LIN Guosheng, MILAN Anton. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern. Seattle, USA: IEEE, 2017: 5168-5177.
16 PENG Chao, ZHANG Xiangyu, YU Gang, et al. Large kernel matters: improve semantic segmentation by global convolutional network[C]//The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2017: 4353-4361.
17 LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//IEEE Conference on Computer Vision & Pattern Recognition. Seattle, WA, USA: IEEE, 2015: 3431-3440.
18 ZEILERM D, FERGUS R. Visualizing and understanding convolutional networks[C]// European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 818-833.
19 SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//International Conference on Learning Representations (ICLR). San Diego, USA: ICLR, 2015.
20 KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//International Conference on Learning Representations (ICLR). San Diego, USA: ICLR, 2015.
[1] ZHANG Zhi-wen,SONG Shi-jun, . Circle locating method based on roundness [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 19-22 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[2] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 27 -32 .
[3] SUN Guohua, WU Yaohua, LI Wei. The effect of excise tax control strategy on the supply chain system performance[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 63 -68 .
[4] WANG Jing,LI Yu-jiang,ZHANG Xiao-jin,BI Yan-jun,CHEN Wei-suo . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 100 -103 .
[5] WANG Pei,ZHANG Yanning,SHEN Jiazhen,LIU Juncheng, . Application of information measure and support vector machine in image edge detection[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(3): 95 -99 .
[6] SUN Yu-li,LI De-fa,ZUO Dun-wen,QI mei . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 19 -23 .
[7] LI Hui-ping, ZHAO Guo-qun, ZHANG Lei, HE Lian-fang. The development status of hot stamping and quenching of ultra high-strength steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 69 -74 .
[8] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 108 -112 .
[9] ZHANG Gong-xiao,YANG Rong-hua . Synthesis and characterization of salicylaldehyde methylthiosemicarbazone Schiff base complexes[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 108 -111 .
[10] CAI Xiaojun , ZHAGN Qing , CHAI Qiaolin 1, KONG Suli 2. AnDivided multipath dynamic source routing based on energybalanced[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 141 -145 .