JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2018, Vol. 48 ›› Issue (2): 114-120.doi: 10.6040/j.issn.1672-3961.0.2017.608

Previous Articles     Next Articles

Estimation of speed and acceleration of the Maglev platform by state observer

DAI Shiyu1,2, LIU Shuqin1,2*   

  1. 1. School of Electrical Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. Shandong Magnetic Bearing Technology Center, Jinan 250061, Shandong, China
  • Received:2017-09-14 Online:2018-04-20 Published:2017-09-14

Abstract: In order to solve the problem of single pendulum oscillation during the Maglev platform hanging iron, structuring state observer which could estimate the velocity and the acceleration in vertical direction of maglev system was advanced to obtain damping coefficient when the system oscillating. The state observer took signs of coil voltage and sensor feedback information of the suspension gap sign as input and velocity and acceleration in vertical direction of the Maglev platform as state variable. On the premise of maintaining the robustness of the original system, pole of the system was placed after adding the state observer. The results showed that robustness of the system stayed well after adding the state observer. And the state observer could accurately estimate the velocity and the acceleration in vertical direction of the Maglev platform and effectively obtain the real time information of the damping coefficient.

Key words: Maglev platform, negative damping oscillation, state observer, pole assignment, Simulink simulation

CLC Number: 

  • TP273.2
[1] 刘豹, 唐万生. 现代控制理论[M]. 天津:机械工业出版社, 2006.
[2] 汪华峰. 基于滑模状态观测器的正弦波PMSM控制策略研究[D]. 成都:西南交通大学, 2007. WANG Huafeng. Research on sinusoidal PMSM control strategy based on sliding mode state observer[D]. Chendu: Southwest Jiaotong University, 2007.
[3] 赵士鑫. 基于状态观测器的倒立摆控制系统的设计与研究[D]. 沈阳:东北大学, 2009. ZHAO Shixin. The design and study of the inverted pendulum control system based on state observer[D]. Shenyang: Northeastern University, 2009.
[4] 周军, 水尊师, 葛致磊. 基于鲁棒状态观测器的运载火箭姿态控制系统设计[J]. 航天控制, 2012, 30(2):11-16. ZHOU Jun, SHUI Zunshi, GE Zhilei. Design of attitude control system for launch vehicle based on robust state observer[J]. Aerospace Control, 2012, 30(2):11-16.
[5] 范友鹏, 刘淑琴, 李红伟,等. 基于干扰观测器的磁轴承开关功放延时补偿[J]. 电机与控制学报, 2013, 17(5):103-109. FAN Youpeng, LIU Shuqin, LI Hongwei, et al. Time-delay compensation of magnetic bearing switching power amplifier based on disturbance observer[J]. Electric Machines and Control, 2013, 17(5):103-109.
[6] 胡业发. 磁力轴承的基础理论与应用[M]. 天津:机械工业出版社, 2006.
[7] 朱宁. 自动控制理论[M]. 北京:清华大学出版社, 2014.
[8] 陈安安. 磁悬浮平台控制系统的研究[D]. 济南:山东大学, 2016. CHEN An'an. Research on the control system of magnetic levitation platform[D]. Jinan: Shandong University, 2016.
[9] 张颖, 陈慧星, 李云钢. 电磁永磁混合EMS型磁浮列车的吸死防护问题研究[J]. 兵工自动化, 2009, 28(1):59-61. ZHANG Yin, CHEN Huixing, LI Yungang. Study on protection against suspension contact in hybrid EMS Maglev Train[J]. Ordnance Industry Automation, 2009, 28(1):59-61.
[10] 马印才, 王春平, 贾占强. 二阶PID电路状态观测器MATLAB实现[J]. 科学技术与工程, 2007, 7(19):5088-5090. MA Yincai, WANG Chunpin, JIA Zhanqiang. Implementation of state observer for second order PID circuits by MATLAB[J]. Science Technology and Engineering, 2007, 7(19):5088-5090.
[11] 卢长明. 主动磁悬浮转子刚度、阻尼分析与研究[D]. 武汉:武汉理工大学, 2008. LU Changming. Analysis and research on stiffness and damping of active magnetic levitation rotor[D]. Wuhan: Wuhan University of Technology, 2008.
[12] SHIBATA T. Precise asymptotics of boundary layers for damped simple pendulum equations[J]. Results in Mathematics, 2010, 58(1-2):105-118.
[13] SHIBATA T. Layer structures for the solutions to the perturbed simple pendulum problems[J]. Journal of Mathematical Analysis & Applications, 2006, 315(2):725-739.
[14] LIU W Y, CHEN Z H, GE X. Chaotic motion in bounded noise perturbation of simple pendulum and harmonic oscillator: international journal of nonlinear sciences and numerical simulation[J]. International Journal of Nonlinear Sciences & Numerical Simulation, 2003, 4(2):161-168.
[15] GUO Q, LIU G, XIANG B, et al. Robust control of magnetically suspended gimbals in inertial stabilized platform with wide load range[J]. Mechatronics, 2016, 39:127-135.
[16] SUN Q L, SUN Z Y. A simple control strategy to stabilize an inverted pendulum system[J]. Advanced Materials Research, 2012, 433-440:3997-4002.
[17] DEHROUYEH A M, DEHROUYEH M, TORABI M, et al. An investigation into size-dependent vibration damping characteristics of functionally graded viscoelastically damped sandwich microbeams[J]. International Journal of Engineering Science, 2015, 96:68-85.
[18] CHA J, JANG E J, MIN J, et al. On the exact solutions of the damped harmonic oscillator with a time-dependent damping constant and a time-dependent angular frequency[J]. Journal of the Korean Physical Society, 2015, 67(2):404-408.
[19] ERAZO K, HERNANDEZ E M. A model-based observer for state and stress estimation in structural and mechanical systems: Experimental validation[J]. Mechanical Systems & Signal Processing, 2014, 43(1-2):141-152.
[20] PAIMUSHIN V N, FIRSOV V A, GYUNAL I, et al. Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 1.experımental basıs[J]. Mechanics of Composite Materials, 2014, 50(2):127-136.
[21] KREBS S, SCHNURR C, PFEIFER M, et al. Reduced-order hybrid interval observer for verified state estimation of an induction machine[J]. Control Engineering Practice, 2016, 57:157-168.
[22] WANG G S, LIANG B, TANG Z X. A parameterized design of reduced-order state observer in linear control systems[J]. Procedia Engineering, 2011, 15:974-978.
[23] WANG Q, RAN M, DONG C. Robust partial integrated guidance and control for missiles via extended state observer[J]. Isa Trans, 2016, 65.
[24] ANTHONY D K, SIMÓN F. Improving the accuracy of the n -dB method for determining damping of non-lightly damped systems[J]. Applied Acoustics, 2010, 71(4):299-305.
[1] RUAN Jiu-Hong, LI Yi-Bin, YANG Fu-An, RONG Hua-Wen. On manned AWID-AWIS vehicle dynamics control [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(1): 10-14.
[2] LIU Qing-rong,ZHANG Cheng-hui,ZHANG Xian-fu . Observer design for nonlinear systems with delay in state [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(5): 24-28 .
[3] JIA Xiu-qin,LIU Yun-gang . H partial-state observer design for nonlinear systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(5): 40-46 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!