JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2016, Vol. 46 ›› Issue (4): 21-27.doi: 10.6040/j.issn.1672-3961.1.2016.078
Previous Articles Next Articles
MO Xiaoyong, PAN Zhisong*, QIU Junyang, YU Yajun, JIANG Mingchu
CLC Number:
[1] 杨龙琪. 网络安全态势感知关键技术研究[D]. 南京: 中国人民解放军理工大学, 2015. YANG Longqi. Key techniques of network security situation awareness[D]. Nanjing: PLA University of Science and Technology, 2015. [2] MOORE A, ZUEV D, CROGAN M. Discriminators for use in flow-based classification[R]. UK: Computer Science Department, Queen Mary University of London, 2005. [3] LI Wei, MOORE A. A machine learning approach for efficient traffic classification[C] //Proceedings of 15th International Symposium on MASCOTS'07. Istanbul, Turkey: IEEE Press, 2007:310-317. [4] MOORE A, ZUEV D. Internet traffic classification using bayesian analysis techniques[J]. Acm Sigmetrics Performance Evaluation Review, 2005, 33(1):50-60. [5] KIM H, CLAFFY K, FOMENKOV M, et al. Internet traffic classification demystified: myths, caveats, and the best practices[C] //Proceedings of the 2008 ACM CoNEXT Conference. Madrid, Spain: ACM Press, 2008:1-12. [6] NGUYEN T, ARMITAGE G. A survey of techniques for internet traffic classification using machine learning[J]. Communications Surveys & Tutorials, 2008, 10(4):56-76. [7] ZHAO Zheng, MORSTATTER F, SHARMA S, et al. Advancing feature selection research[R]. USA:School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 2010. [8] KATAKIS I, TSOUMAKAS G, VLAHAVAS I. On the utility of incremental feature selection for the classification of textual data streams[C] // Proceedings of the 10th Panhellenic Conference on Informatics. Volos, Greece: Springer Berlin Heidelberg Press, 2005:338-348. [9] WENERSTROM B, GIRAUD-CARRIER C. Temporal data mining in dynamic feature spaces[C] // Proceedings of the Sixth ICDM'06. Hong Kong, China: IEEE Computer Society Press, 2006:1141-1145. [10] MASUD M, CHEN Q, GAO J, et al. Classification and novel class detection of data streams in a dynamic feature space[C] // Proceedings of the 2010 European Conference on Machine Learning and Knowledge Discovery in Databases. Barcelona, Spain: Springer Berlin Heidelberg Press, 2010:337-352. [11] YANG Longqi, HU Guyu, LI Dong, et al. Anomaly detection based on efficient Euclidean projection[J]. Security and Communication Networks, 2015, 8(17):3229-3237. [12] WIDROW B, HOFF M E. Adaptive switching circuits[C] // Proceedings of the 1960 IRE WESCON Convention Record. Los Angeles, USA: Institute of Radio Engineers Press, 1960:96-104. [13] ROSENBLATT F. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6):386-408. [14] FREUND Y, SCHAPIRE R E. Large margin classification using the perceptron algorithm[J]. Machine Learning, 1999, 37(3):277-296. [15] WANG Jialei, ZHAO Peilin, HOI S C H, et al. Online feature selection and its applications[J]. Knowledge and Data Engineering, 2014, 26(3):698-710. [16] ABERNETHY J, BARTLETT P, RAKHLIN A. Multitask learning with expert advice[C] // Proceedings of the 2007 COLT. San Diego, USA: Springer Berlin Heidelberg Press, 2007:484-498. [17] LUGOSI G, PAPASPILIOPOULOS O, STOLTZ G. Online multi-task learning with hard constraints[C] // Proceedings of the COLT'09. Montreal, Canada: ACL Press, 2009:315-320. [18] WARMUTH M K, KUZMIN D. Online variance minimization[J]. Machine Learning, 2012, 87(1):514-528. [19] DEKEL O, GILAD-BACHRACH R, SHAMIR O, et al. Optimal distributed online prediction using mini-batches[J]. The Journal of Machine Learning Research, 2012, 13(1):165-202. [20] JAIN P, KULIS B, DHILLON I S, et al. Online metric learning and fast similarity search[C] //Proceedings of the NIPS'09. Vancouver, Canada: NIPS Foundation Press, 2009:761-768. [21] BORDES A, ERTEKIN S, WESTON J, et al. Fast kernel classifiers with online and active learning[J]. The Journal of Machine Learning Research, 2012, 6(3):1579-1619. [22] DONOHO D L. Compressed sensing[J]. Information Theory, 2006, 52(4):1289-1306. [23] FONTUGNE R, BORGNAT P, ABRY P, et al. Mawilab: combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking[C] //Proceedings of the 2010 ACM CoNEXT conference. Philadelphia, USA: ACM Press, 2010:1-12. |
[1] | YANG Ai-min1, ZHOU Yong-mei1, DENG He2, ZHOU Jian-feng3. Method of feature generation and selection for network traffic classification [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 1-7. |
|