JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2016, Vol. 46 ›› Issue (2): 1-5.doi: 10.6040/j.issn.1672-3961.2.2015.030

    Next Articles

Radial basis function extreme learning machine based on core sets

ZHAI Junhai1, ZHANG Sufang2, HU Wenxiang3, WANG Xizhao1   

  1. 1. Hebei Province Key Laboratory of Machine Learning and Computational Intelligence, Hebei University, Baoding 071002, Hebei, China;
    2. Hebei Branch of Meteorological Cadres Training Institute, China Meteorological Administration, Baoding 071000, Hebei, China;
    3. School of Computer Science and Technology, Hebei University, Baoding 071002, Hebei, China
  • Received:2015-05-18 Online:2016-04-20 Published:2015-05-18

Abstract: Radial basis function-extreme learning machine(RBF-ELM)employed randomized method to initialize the centers and widths. Randomly initialization of the two parameters led to instability of RBF-ELM. Moreover, for different data sets, it was difficult to determine the number of the hidden nodes. An improved algorithm was proposed, which firstly selected important instances with core set method, and then the centers were initialized with the selected instances, the width parameters were randomly initialized. The proposed algorithm not only could solve the problem of the instability of RBF-ELM to some extent, but also could determine the number of hidden layer nodes. Experimental results showed that the proposed algorithm outperforms RBF-ELM algorithm.

Key words: radial basis function, random mapping, kernel functions, core sets, extreme learning machine

CLC Number: 

  • TP181
[1] HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine: A new learning scheme of feedforward neural networks[C] //Proceedings of International Joint Conference on Neural Networks(IJCNN2004). Budapest, Hungary: IJCNN, 2004:985-990.
[2] HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1-3):489-501.
[3] HUANG Guangbin, WANG Dianhui, LAN Yuan. Extreme learning machines: a survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2):107-122.
[4] HUANG Guangbin, CHEN Lei, SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Transactions on Neural Networks, 2006, 17(4):879-892.
[5] KUMAR S. Neural network[M]. Beijing: Tsinghua University Press, 2006.
[6] 高小伟, 蒋晓芸. BP神经网络在入侵检测系统中的应用及优化 [J]. 山东大学学报(工学版), 2006, 36(6):107-110. GAO Xiaowei, JIANG Xiaoyun. The application of BP neural network in intrusion detection system and its optimization[J]. Journal of Shandong University(Engineering Science), 2006, 36(6):107-110.
[7] 姚福安, 庞向坤, 焦营营,等. 基于三色法和BP神经网络的回转窑温度检测[J]. 山东大学学报(工学版), 2008,38(2):61-65. YAO Fuan, PANG Xiangkun, JIAO Yingying, et al. Temperature detection of a rotary kiln based on three color measurement and the BP neural network[J]. Journal of Shandong University(Engineering Science), 2008, 38(2):61-65.
[8] VAPNIK V. The nature of statistical learning theory[M]. New York: Springer, 1995.
[9] 赵加敏,冯爱民,刘学军. 局部密度嵌入的结构单类支持向量机[J]. 山东大学学报(工学版), 2012,42(4):14-18. ZHAO Jiamin, FENG Aimin, LIU Xuejun. A new structured one-class support vector machine with local density embedding[J]. Journal of Shandong University(Engineering Science), 2012, 42(4):14-18.
[10] 施珺, 朱敏. 一种基于灰色系统和支持向量机的预测优化模型[J]. 山东大学学报(工学版), 2012, 42(5):7-11. SHI Jun, ZHU Min. An optimization model for forecasting based on grey system and support vector machine [J]. Journal of Shandong University(Engineering Science), 2012, 42(5):7-11.
[11] 王雪松, 程玉虎, 郝名林. 一种支持向量机参数选择的改进分布估计算法[J]. 山东大学学报(工学版), 2009,39(3):7-10. WANG Xuesong, CHENG Yuhu, HAO Minglin. Parameters selection of a support vector machine using an improved estimation of the distribution algorithm[J]. Journal of Shandong University(Engineering Science), 2009, 39(3):7-10.
[12] HUANG Guangbin, LI Mingbin, CHEN Lei, et al. Incremental extreme learning machine with fully complex hidden nodes[J]. Neurocomputing, 2008, 71(4-6):576-583.
[13] LIANG Nanning, HUANG Guangbin, SARATCHANDRAN P, et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural Networks, 2006, 17(6):1411-1423.
[14] MICHE Y, SORJAMA A, BAS P, et al. OP-ELM: Optimally pruned extreme learning machine[J]. IEEE Transactions on Neural Networks, 2010, 21(1):158-162.
[15] HUANG Guangbin, SIEW C K. Extreme Learning Machine: RBF Network Case[C] //Proceedings of Conference on Control, Automation, Robotics and Vision. Kunming, China: CARV, 2004:1029-1036.
[16] ZHAI Junhai, XU Hongyu, WANG Xizhao. Dynamic ensemble extreme learning machine based on sample entropy[J]. Soft Computing September, 2012, 16(9):1493-1502.
[17] BADOIU M, CLARKSON K L. Optimal core-sets for balls[J]. Computational Geometry, 2008, 40(1):14-22.
[18] KUMAR P, MITCHELL J, YILDIRIM A. Approximate minimum enclosing balls in high dimensions using core-sets[J]. ACM Journal of Experimental Algorithmics, 2003(8):1-29.
[19] TSANG I W, KWOK J T, CHEUNG P M. Core vector machines: Fast SVM training on very large data sets[J]. Journal of Machine Learning Research, 2005(6):363-392.
[20] FRANK A, ASUNCION A. UCI Machine Learning Repository[EB/OL] [2013-10-05].http://archive.ics.uci.edu/ml.
[1] CAO Ya, DENG Zhaohong, WANG Shitong. An radial basis function neural network model based on monotonic constraints [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 127-133.
[2] HE Qijia, LIU Zhenbing, XU Tao, JIANG Shujie. MR image classification based on LBP and extreme learning machine [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 86-93.
[3] AN Chun-lin1, LU Hui-juan1,2*, ZHENG En-hui3, WANG Ming-yi1, LU Yi4. Gene expression data classification of the extreme learning machine with misclassification cost and rejection cost [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(4): 18-25.
[4] GUO Hui-ling, WANG Shi-tong*, YAN Xiao-bo. A novel method for face recognition based on generalized rotation invariant kernel [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 71-79.
[5] YIN Jian-chuan1,2, ZOU Zao-jian1,3, XU Feng1. An improved extreme learning machine based on Akaike criterion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(6): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!