Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (5): 78-87.doi: 10.6040/j.issn.1672-3961.0.2024.202

• Electrical Engineering—Special Issue for Smart Energy • Previous Articles    

Coordinated control strategies for energy storage and other controllable resources in power system emergencies

SUN Zhongqing1, LAI Yening1, ZHANG Jian2, CAO Xuening2, ZHANG Hengxu2*   

  1. SUN Zhongqing1, LAI Yening1, ZHANG Jian2, CAO Xuening2, ZHANG Hengxu2*(1. State Grid Electric Power Research Institute(NARI Group)Corporation, Nanjing 211106, Jiangsu, China;
    2. School of Electrical Engineering, Shandong University, Jinan 250061, Shandong, China
  • Published:2025-10-17

Abstract: The grid-connected capacity of new energy sources with low emissions, low inertia, and high volatility was rapidly increased, significantly altering the dynamic characteristics of the power system, such as frequency response. This posed great challenges to safety and stability analysis and control. While the high proportion of wind, solar, and storage created operational challenges, opportunities for coordinated control among them were also presented. The mechanism by which energy storage improved stability was explored, considering the characteristics of different types of distributed resources and the control requirements in emergency situations. The characteristics of various controllable resources were analyzed to fully utilize the fast response characteristics of energy storage. These resources were classified based on support time, and the charging and discharging power of the energy storage system was determined, alongside adjustments to control strategies. A hierarchical coordinated operation and control strategy for controllable resources, based on the rapid adjustment of energy storage power, was proposed. The effectiveness of the proposed strategy was verified using a system with multiple types of units as an example.

Key words: energy storage units, controllable resources, emergency control, hierarchical coordinated control, load shed

CLC Number: 

  • TM712
[1] 张恒旭, 曹永吉, 张怡, 等. 电力系统频率动态行为衍变与分析方法需求综述[J]. 山东大学学报(工学版), 2021, 51(5): 42-52. ZHANG Hengxu, CAO Yongji, ZHANG Yi, et al. Review of frequency dynamic behavior evolution and analysis method requirements of power system[J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 42-52.
[2] LIANG X D. Emerging power quality challenges due to integration of renewable energy sources[J]. IEEE Transactions on Industry Applications, 2017, 53(2): 855-866.
[3] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904. ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904.
[4] 孙华东, 王宝财, 李文锋, 等. 高比例电力电子电力系统频率响应的惯量体系研究[J]. 中国电机工程学报, 2020, 40(16): 5179-5192. SUN Huadong, WANG Baocai, LI Wenfeng, et al. Research on inertia system of frequency response for power system with high penetration electronics[J]. Proceedings of the CSEE, 2020, 40(16): 5179-5192.
[5] 张恒旭, 高志民, 曹永吉, 等. 高比例可再生能源接入下电力系统惯量研究综述及展望[J]. 山东大学学报(工学版), 2022, 52(5): 1-13. ZHANG Hengxu, GAO Zhimin, CAO Yongji, et al. Review and prospect of research on power system inertia with high penetration of renewable energy source[J]. Journal of Shandong University(Engineering Science), 2022, 52(5): 1-13.
[6] 谢小荣, 贺静波, 毛航银, 等. “双高” 电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461-475. XIE Xiaorong, HE Jingbo, MAO Hangyin, et al. New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2): 461-475.
[7] 郭立东, 雷鸣宇, 杨子龙, 等. 光储微网系统多目标协调控制策略[J]. 电工技术学报, 2021, 36(19): 4121-4131. GUO Lidong, LEI Mingyu, YANG Zilong, et al. Multi-objective coordinated control strategy for photovoltaic and energy-storage microgrid system[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4121-4131.
[8] 卢志刚, 苗泽裕, 蔡瑶. 考虑时变线阻的多储能SOC稳定均衡控制策略[J]. 高电压技术, 2024, 50(1):127-137. LU Zhigang, MIAO Zeyu, CAI Yao. Stable equilibrium control strategy for multi-energy storage SOC considering time-varying linear resistance[J]. High Voltage Engineering, 2024, 50(1): 127-137.
[9] 王浩, 康博阳, 郑征, 等. 考虑电动汽车灵活储能的交直流混合微电网功率协调控制策略[J]. 电网技术, 2023, 47(5): 2009-2025. WANG Hao, KANG Boyang, ZHENG Zheng, et al. Power coordinated control strategy of AC-DC hybrid microgrid considering flexible energy storage for electric vehicles[J]. Power System Technology, 2023, 47(5): 2009-2025.
[10] 董新洲, 汤涌, 卜广全, 等. 大型交直流混联电网安全运行面临的问题与挑战[J]. 中国电机工程学报, 2019, 39(11): 3107-3119. DONG Xinzhou, TANG Yong, BU Guangquan, et al. Confronting problem and challenge of large scale AC-DC hybrid power grid operation[J]. Proceedings of the CSEE, 2019, 39(11): 3107-3119.
[11] MENG L X, ZAFAR J, KHADEM S K, et al. Fast frequency response from energy storage systems: a review of grid standards, projects and technical issues[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1566-1581.
[12] 张怡, 张恒旭, 李常刚, 等. 电力系统频率响应模式及其量化描述[J]. 中国电机工程学报, 2021, 41(17): 5877-5886. ZHANG Yi, ZHANG Hengxu, LI Changgang,et al. Power system frequency responses pattern and its quantitative analysis[J]. Proceedings of the CSEE, 2021, 41(17): 5877-5886.
[13] 寇凌峰, 张颖, 季宇, 等. 分布式储能的典型应用场景及运营模式分析[J]. 电力系统保护与控制, 2020, 48(4): 177-187. KOU Lingfeng, ZHANG Ying, JI Yu, et al. Typical application scenario and operation mode analysis of distributed energy storage[J]. Power System Protection and Control, 2020, 48(4): 177-187.
[14] 李兆伟, 方勇杰, 李威, 等. 电化学储能应用于电网频率安全防御三道防线的探讨[J]. 电力系统自动化, 2020, 44(8): 1-7. LI Zhaowei, FANG Yongjie, LI Wei, et al. Discussion on application of electrochemical energy storage in three defense lines of power grid frequency[J]. Automation of Electric Power Systems, 2020, 44(8): 1-7.
[15] 叶林, 王凯丰, 赖业宁, 等. 低惯量下电力系统频率特性分析及电池储能调频控制策略综述[J]. 电网技术, 2023, 47(2): 446-464. YE Lin, WANG Kaifeng, LAI Yening, et al. Review of frequency characteristics analysis and battery energy storage frequency regulation control strategies in power system under low inertia level[J]. Power System Technology, 2023, 47(2): 446-464.
[16] 黄旭祥, 韩学山, 李家维, 等. 大电网储能与各类电源协同规划[J]. 分布式能源, 2019, 4(5): 67-74. HUANG Xuxiang, HAN Xueshan, LI Jiawei, et al. Coordinated planning of energy storage and various power sources in large power grid[J]. Distributed Energy, 2019, 4(5): 67-74.
[17] YU H Y, ZHANG Q J, ZENG Y J, et al. A novel layered coordinated control scheme for energy storage system in isolated DC microgrid based on multi-agent system[J]. Journal of Energy Storage, 2023, 72: 108564.
[18] 席磊, 金澄心, 李彦营, 等. 基于信息松弛的多态能源协调控制方法研究[J]. 电力系统保护与控制, 2023, 51(9): 1-12. XI Lei, JIN Chengxin, LI Yanying, et al. A polymorphic energy-coordinated control strategy based on information relaxation[J]. Power System Protection and Control, 2023, 51(9): 1-12.
[19] 郭慧, 汪飞, 顾永文, 等. 基于电压分层控制的直流微电网及其储能扩容单元功率协调控制策略[J]. 电工技术学报, 2022, 37(12): 3117-3131. GUO Hui, WANG Fei, GU Yongwen, et al. Coordinated power control strategy for DC microgrid and storage expansion unit based on voltage hierarchical control[J]. Transactions of China Electrotechnical Society, 2022, 37(12): 3117-3131.
[20] 程维杰, 颜云松, 康明才, 等. 考虑分布式电源影响的配电网源荷储分层协调控制[J]. 电力工程技术, 2020, 39(5): 113-119. CHENG Weijie, YAN Yunsong, KANG Mingcai, et al. Generation-load-storage layered coordinated control of distribution network considering the influence of distributed generation[J]. Electric Power Engineering Technology, 2020, 39(5): 113-119.
[21] 钟祖浩, 文云峰, 叶希, 等. 多类型资源协调的“双高”送端电网频率紧急控制策略[J]. 电网技术, 2024, 48(9): 3801-3811. ZHONG Zuhao, WEN Yunfeng, YE Xi, et al. Emergency frequency control strategy for double-high Sending-end grids with coordination of multiple resources[J]. Power System Technology, 2024, 48(9): 3801-3811.
[22] 朱兰, 董凯旋, 唐陇军, 等. 计及同步机惯性与储能虚拟惯性价值的电能、惯性及一次调频联合优化出清模型[J]. 中国电机工程学报, 2024, 44(19): 7543-7555. ZHU Lan, DONG Kaixuan, TANG Longjun, et al. Joint optimal clearing model for electric energy, inertia and primary frequency response considering synchronous inertia and energy storage virtual inertia values[J]. Proceedings of the CSEE, 2024, 44(19): 7543-7555.
[23] 陈亦平, 卓映君, 刘映尚, 等. 高比例可再生能源电力系统的快速频率响应市场发展与建议[J]. 电力系统自动化, 2021, 45(10): 174-183. CHEN Yiping, ZHUO Yingjun, LIU Yingshang, et al. Development and recommendation of fast frequency response market for power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(10): 174-183.
[24] 刘小龙, 李欣然, 刘志谱, 等. 基于风险量化与需求侧响应的综合能源系统储能事故备用优化利用[J]. 电工技术学报, 2021, 36(9): 1901-1913. LIU Xiaolong, LI Xinran, LIU Zhipu, et al. Study on the optimal utilization of integrated energy system emergency reserve based on risk quantification and demand side response[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1901-1913.
[25] 黎博, 陈民铀, 钟海旺, 等. 高比例可再生能源新型电力系统长期规划综述[J]. 中国电机工程学报, 2023, 43(2): 555-581. LI Bo, CHEN Minyou, ZHONG Haiwang, et al. A review of long-term planning of new power systems with large share of renewable energy[J]. Proceedings of the CSEE, 2023, 43(2): 555-581.
[26] SHI Z D, WANG W S, HUANG Y H, et al. Simultaneous optimization of renewable energy and energy storage capacity with the hierarchical control[J]. CSEE Journal of Power and Energy Systems, 2022, 8(1): 95-104.
[1] Meng LIU,Dingyi CHENG,Wen ZHANG,Hengxu ZHANG,Kuan LI,Guohui ZHANG,Jianjun SU. Discussion on emergency control of central air conditioner at large receiving-end grid to cope with HVDC blocking fault [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 72-81.
[2] Meng LIU,Taoyang XU,Changgang LI,Yue WU,Zhi WANG,Fangfang SHI,Jianjun SU,Guohui ZHANG,Kuan LI. Optimization of emergency load shedding of receiving-end power grid based on Particle Swarm Optimization [J]. Journal of Shandong University(Engineering Science), 2019, 49(1): 120-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!