Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (3): 1-15.doi: 10.6040/j.issn.1672-3961.0.2024.180

• Transportation Engineering—Special Issue for Intelligent Transportation •    

Review on digital map stitching technology

LÜ Bin1, LIU Miao1, WU Jianqing2*, ZHANG Ziyi2, CHEN Qixiang1   


  1. Bin1, LIU Miao1, WU Jianqing2*, ZHANG Ziyi2, CHEN Qixiang1(1. School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China;
    2. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China
  • Published:2025-06-05

Abstract: As simultaneous localization and mapping(SLAM)research deepened, the complexity and workload of SLAM tasks increased. Scholars begun to shift their research focus towards multi-robot(or multi-vehicle)SLAM. The collaboration of multiple robots enhanced mapping efficiency. When conducting multi-robot(or multi-vehicle)SLAM, it was necessary to merge local maps to construct a global map. Digital map stitching technology transforms from local maps to global maps through feature matching and fusion of overlapping areas, improving the accuracy and efficiency of map construction. This technology had significant application value in fields such as autonomous driving, multi-robot systems, and geographic information systems. This paper introduced the typical digital maps commonly used in the map stitching process, along with their advantages and disadvantages. It analyzed the factors influencing stitching results, systematically discussing digital map stitching methods around the aspects of homogeneous and heterogeneous map stitching. Additionally, it examined the existing issues in map stitching technology and outlined potential solutions to the challenges posed by heterogeneous map stitching technology.

Key words: digital map, autonomous driving, SLAM, multi robot, map stitching

CLC Number: 

  • TP249
[1] 李熹明. 智能交通运输的未来发展趋势与挑战[J]. 运输经理世界, 2024(7): 49-51. LI Ximing. Future development trends and challenges of intelligent transportation[J]. Transport Business China, 2024(7): 49-51.
[2] 吴建清, 宋修广. 同步定位与建图技术发展综述[J]. 山东大学学报(工学版), 2021, 51(5): 16-31. WU Jianqing, SONG Xiuguang. Review on development of simultaneous localization and mapping technology[J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 16-31.
[3] 曹风魁, 庄严, 闫飞, 等. 移动机器人长期自主环境适应研究进展和展望[J]. 自动化学报, 2020, 46(2): 205-221. CAO Fengkui, ZHUANG Yan, YAN Fei, et al. Long-term autonomous environment adaptation of mobile robots: state-of-the-art methods and prospects[J]. Acta Automatica Sinica, 2020, 46(2): 205-221.
[4] YU S E, FU C Y, GOSTAR A K, et al. A review on map-merging methods for typical map types in multiple-ground-robot SLAM solutions[J]. Sensors, 2020, 20(23): 6988.
[5] 刘鑫, 王忠, 秦明星. 多机器人协同SLAM技术研究进展[J]. 计算机工程, 2022, 48(5): 1-10. LIU Xin, WANG Zhong, QIN Mingxing. Research progress of multi-robot collaborative SLAM technology[J]. Computer Engineering, 2022, 48(5): 1-10.
[6] 李纪鑫, 吴宗卓, 赫磊, 等. 多机器人协同的SLAM算法研究[J]. 自动化与仪器仪表, 2023(9): 205-209. LI Jixin, WU Zongzhuo, HE Lei, et al. SLAM algorithm for multi-robot collaboration[J]. Automation & Instru-mentation, 2023(9): 205-209.
[7] 阴贺生, 裴硕, 徐磊,等. 多机器人视觉同时定位与建图技术研究综述[J]. 机械工程学报, 2022, 58(11): 11-36. YIN Hesheng, PEI Shuo, XU Lei, et al. Review of research on multi-robot visual simultaneous localization and mapping[J]. Journal of Mechanical Engineering, 2022, 58(11): 11-36.
[8] ISHIOKA K.HIRAKI K, ANZAI Y. Cooperative map generation by heterogenous autonomous mobile robots[C] //IJCAI'93 Workshop on Dynamically Interacting Robots. Chambery, France: [s.n.] , 1993: 57-67.
[9] WILLIAMS S B, DISSANAYAKE G, DURRANTWHYTE H. Towards multi-vehicle simultaneous localisation and mapping[C] //Proceedings 2002 IEEE International Conference on Robotics and Automation. Washington, D.C., USA: IEEE, 2002: 2743-2748.
[10] KO J, STEWART B, FOX D, et al. A practical, decision-theoretic approach to multi-robot mapping and exploration[C] //Proceedings 2003 IEEE/RSJ Inter-national Conference on Intelligent Robots and Systems(IROS 2003). Las Vegas, USA: IEEE, 2003: 3232- 3238.
[11] KONOLIGE K, FOX D, LIMKETKAI B, et al. Map merging for distributed robot navigation[C] //Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2003). Las Vegas, USA: IEEE, 2003: 212-217.
[12] LYNCH M P, SAALFELD A J. Conflation: automated map compilation:a video game approach[C] //7th International Symposium on Computer-Assisted Cartogra-phy(Auto Carto 7). Washington, D.C., USA: [s.n.] , 1985: 343-352.
[13] DENG S S, TONG X H. A new least squares adjustment method for map conflation[C] //Geoinformatics 2006: Geospatial Information Science. Wuhan, China: SPIE, 2006: 400-411.
[14] FILIN S, DOYTSHER Y. A linear mapping approach to map conflation: matching of polylines[J]. Surveying and Land Information Systems, 1999, 59(2): 107-114.
[15] FILIN S, DOYTSHER Y. A linear conflation approach for the integration of photogrammetric information and GIS data[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33: 282-288.
[16] ZHANG Q. Research on feature matching and conflation of geographic databases [D]. Wuhan: University of Wuhan, 2002.
[17] RONE W, BEN-TZVI P. Mapping, localization and motion planning in mobile multi-robotic systems[J]. Robotica, 2013, 31(1): 1-23.
[18] ELFES A. Using occupancy grids for mobile robot perception and navigation[J]. Computer, 1989, 22(6): 46-57.
[19] RYDE J, HU H S. 3D mapping with multi-resolution occupied voxel lists[J]. Autonomous Robots, 2010, 28(2): 169-185.
[20] 刘朋, 任工昌. 特征地图的室内机器人路径规划融合算法[J]. 计算机科学与探索, 2023, 17(11): 2755-2766. LIU Peng, REN Gongchang. Path planning fusion algorithm for indoor robot based on feature map[J]. Journal of Frontiers of Computer Science and Techno-logy, 2023, 17(11): 2755-2766.
[21] 王娜, 马昕. 基于细化算法的移动机器人拓扑地图创建[J]. 计算机技术与发展, 2009, 19(10): 11-13. WANG Na, MA Xin. Mobile robot topological map building based on thinning algorithm[J]. Computer Technology and Development, 2009, 19(10): 11-13.
[22] KOLHATKAR C, WAGLE K. Review of SLAM algo-rithms for indoor mobile robot with LiDAR and RGB-D camera technology[C] // Innovations in Electrical and Electronic Engineering. Singapore: Springer Singapore, 2021: 397-409.
[23] 崔杨. 智能移动机器人同步定位与地图构建算法研究[J]. 电子世界, 2013(23): 113-114. CUI Yang. Research on synchronous positioning and map construction algorithm of intelligent mobile robot[J]. Electronics World, 2013(23): 113-114.
[24] ANDERSONE I. Heterogeneous map merging:state of the art[J]. Robotics, 2019, 8(3): 74.
[25] WU J Q, ZHUANG X C, TIAN Y, et al. Real-time point cloud clustering algorithm based on roadside LiDAR[J]. IEEE Sensors Journal, 2024, 24(7): 10608-10619.
[26] WU J Q, XU H, ZHENG J Y. Automatic background filtering and lane identification with roadside LiDAR data[C] //2017 IEEE 20th International Conference on Intelligent Transportation Systems(ITSC). Yokohama, Japan: IEEE, 2017: 1-6.
[27] LÜ B, XU H, WU J Q, et al. Revolution and rotation-based method for roadside LiDAR data integration[J]. Optics & Laser Technology, 2019, 119: 105571.
[28] WU J Q, XU H, LIU W. Points registration for roadside LiDAR sensors[J]. Transportation Research Record, 2019, 2673(9): 627-639.
[29] YUE R, XU H, WU J Q, et al. Data registration with ground points for roadside LiDAR sensors[J]. Remote Sensing, 2019, 11(11): 1354.
[30] SAEEDI S, TRENTINI M, SETO M, et al. Multiple-robot simultaneous localization and mapping: a review[J]. Journal of Field Robotics, 2016, 33(1): 3-46.
[31] MOHANARAJAH G, USENKO V, SINGH M, et al. Cloud-based collaborative 3D mapping in real-time with low-cost robots[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(2): 423-431.
[32] MARCOTTE R J, WANG X P, MEHTA D, et al. Optimizing multi-robot communication under bandwidth constraints[J]. Autonomous Robots, 2020, 44(1): 43-55.
[33] MARJOVI A, CHOOBDAR S, MARQUES L. Robotic clusters: multi-robot systems as computer clusters A topological map merging demonstration[J]. Robotics and Autonomous Systems, 2012, 60(9): 1191-1204.
[34] JESSUP J, GIVIGI S N, BEAULIEU A. Robust and efficient multirobot 3D mapping merging with octree-based occupancy grids[J]. IEEE Systems Journal, 2015, 11(3): 1723-1732.
[35] HUSAIN A, JONES H, KANNAN B, et al. Mapping planetary caves with an autonomous, heterogeneous robot team[C] //2013 IEEE Aerospace Conference. Big Sky, USA: IEEE, 2013:1-13.
[36] FERR(~overA)O V T, VINHAL C D N, DA CRUZ G. An occupancy grid map merging algorithm invariant to scale, rotation and translation[C] //2017 Brazilian Conference on Intelligent Systems(BRACIS). Uber-landia, Brazil: IEEE, 2017: 246-251.
[37] HOWARD A. Multi-robot simultaneous localization and mapping using particle filters[J]. The International Journal of Robotics Research, 2006, 25(12): 1243-1256.
[38] CHEN B F, LI S Y, ZHAO H W, et al. Map merging with suppositional box for multi-robot indoor mapping[J]. Electronics, 2021, 10(7): 815.
[39] SAEEDI S, TRENTINI M, LI H. A hybrid approach for multiple-robot SLAM with particle filtering[C] //2015 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Hamburg, Germany: IEEE, 2015: 3421-3426.
[40] 任健铭. 基于三维激光点云的室内机器人即时定位与建图算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. REN Jianming. Simultaneous localization and mapping algorithms for indoor robots based on three-dimensional laser point cloud[D]. Harbin: Harbin Institute of Technology, 2019.
[41] SMITH R, SELF M, CHEESEMAN P. Autonomous robot vehicles[M]. New York: Springer, 1990: 167-193.
[42] PEI F J, ZHU M J, WU X P. A decorrelated distributed EKF-SLAM system for the autonomous navigation of mobile robots[J]. Journal of Intelligent & Robotic Systems, 2020, 98(3): 819-829.
[43] 周振, 王冬青, 许柏杨,等. 基于改进多新息理论的EKF-SLAM算法[J]. 自动化与仪器仪表, 2020(6): 21-25. ZHOU Zhen, WANG Dongqing, XU Boyang, et al. EKF-SLAM algorithm based on improved multi-innovation theory[J]. Automation & Instrumentation, 2020(6): 21-25.
[44] 蔡艳, 杨光永, 黄训爱,等. 多策略鲸鱼算法优化粒子滤波的SLAM精度研究[J]. 重庆理工大学学报(自然科学), 2023, 37(6): 136-145. CAI Yan, YANG Guangyong, HUANG Xun'ai, et al. Research on SLAM accuracy of paricle filter optimized by multi-strategy whale algorithm[J]. Journal of Chongqing University of Technology(Natural Science), 2023, 37(6): 136-145.
[45] 曹洁, 荆银银, 王进花. 基于改进的萤火虫算法优化粒子滤波方法[J]. 兰州理工大学学报, 2018, 44(4): 84-89. CAO Jie, JING Yinyin, WANG Jinhua. Optimized particle filter algorithm based on improved firefly algorithm[J]. Journal of Lanzhou University of Technology, 2018, 44(4): 84-89.
[46] LU F, MILIOS E. Globally consistent range scan alignment for environment mapping[J]. Autonomous Robots, 1997, 4(4): 333-349.
[47] OLSON E B. Robust and efficient robotic mapping[D]. Cambridge: Massachusetts Institute of Technology, 2008.
[48] FRESE U. Treemap: an O(log n)algorithm for indoor simultaneous localization and mapping[J]. Autonomous Robots, 2006, 21(2): 103-122.
[49] GRISETTI G, STACHNISS C, GRZONKA S, et al. A tree parameterization for efficiently computing maximum likelihood maps using gradient descent[C] //Robotics: Science and Systems. Atlanta, USA: [s.n.] , 2007: 65-72.
[50] KAESS M, RANGANATHAN A, DELLAERT F. iSAM:incremental smoothing and mapping[J]. IEEE Transactions on Robotics, 2008, 24(6): 1365-1378.
[51] 颜普, 曹昊宇, 雷为好. 基于改进图优化的激光SLAM算法[J]. 安徽大学学报(自然科学版), 2023, 47(4): 35-41. YAN Pu, CAO Haoyu, LEI Weihao. Laser SLAM algorithm based on improved graph optimization[J]. Journal of Anhui University(Natural Science Edition), 2023, 47(4): 35-41.
[52] SCHUSTER M J, BRAND C, HIRSCHMÜLLER H, et al. Multi-robot 6D graph SLAM connecting decoupled local reference filters[C] //2015 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Hamburg, Germany: IEEE, 2015: 5093-5100.
[53] ERINC G, BALAGUER B, CARPIN S. Heterogeneous map merging using WiFi signals[C] //2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan: IEEE, 2013: 5258-5264.
[54] LEE H C, LEE S H, CHOI M H, et al. Probabilistic map merging for multi-robot RBPF-SLAM with unknown initial poses [J]. Robotica, 2012, 30(2): 205-220.
[55] BURGARD W, MOORS M, FOX D, et al. Collaborative multi-robot exploration[C] // IEEE International Confer-ence on Robotics and Automation(ICRA). San Francisco, USA: IEEE, 2000: 476-481.
[56] 郝奇, 陈智君, 郑亮,等. 基于概率匹配的栅格地图拼接算法[J]. 组合机床与自动化加工技术, 2022(5): 83-87. HAO Qi, CHEN Zhijun, ZHENG Liang, et al. Mosaic algorithm of grid map based on probability matching[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2022(5): 83-87.
[57] CARPIN S, BIRK A, JUCIKAS V. On map merging[J]. Robotics and Autonomous Systems, 2005, 53(1): 1-14.
[58] BIRK A, CARPIN S. Merging occupancy grid maps from multiple robots[J]. Proceedings of the IEEE, 2006, 94(7): 1384-1397.
[59] LI H, NASHASHIBI F. A new method for occupancy grid maps merging: application to multi-vehicle cooperative local mapping and moving object detection in outdoor environment[C] //2012 12th International Conference on Control Automation Robotics & Vision(ICARCV). Guangzhou, China: IEEE, 2012: 632-637.
[60] LI H, NASHASHIBI F. Multi-vehicle cooperative localization using indirect vehicle-to-vehicle relative pose estimation[C] //2012 IEEE International Conference on Vehicular Electronics and Safety(ICVES 2012). Istanbul, Turkey: IEEE, 2012: 267-272.
[61] MA L, ZHU J H, ZHU L, et al. Merging grid maps of different resolutions by scaling registration[J]. Robotica, 2016, 34(11): 2516-2531.
[62] 黄小杭, 曾碧, 刘建圻, 等. 融合图特征的多机器人栅格地图拼接方法[J]. 计算机工程与应用, 2022, 58(14): 299-305. HUANG Xiaohang, ZENG Bi, LIU Jianqi, et al. Multi-robot grid map stitching method combining graph features[J]. Computer Engineering and Applications, 2022, 58(14): 299-305.
[63] 唐宏伟, 孙炜, 杨凯, 等. 基于SURF特征的多机器人栅格地图拼接方法[J]. 电子测量与仪器学报, 2017, 31(6): 859-868. TANG Hongwei, SUN Wei, YANG Kai, et al. Grid map merging approach of multi-robot based on SURF feature[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(6): 859-868.
[64] 李雅梅, 苏龙. 一种基于局部特征的栅格地图拼接方法[J]. 计算机应用与软件, 2020, 37(1): 110-115. LI Yamei, SU Long. A grid map merging approach based on local feature[J]. Computer Applications and Software, 2020, 37(1): 110-115.
[65] 张子毅, 孙焘, 王琦, 等. 基于坐标转换和ICP算法的水利点云配准方法[J]. 山东大学学报(工学版), 2024, 54(5): 155-162. ZHANG Ziyi, SUN Tao, WANG Qi, et al. Point cloud registration method of water conservancy based on coordinate transformation and ICP algorithm[J]. Journal of Shandong University(Engineering Science), 2024, 54(5): 155-162.
[66] 纪华, 吴元昊, 孙宏海, 等. 结合全局信息的SIFT特征匹配算法[J]. 光学精密工程, 2009, 17(2): 439-444. JI Hua, WU Yuanhao, SUN Honghai, et al. SIFT feature matching algorithm with global information[J]. Optics and Precision Engineering, 2009, 17(2): 439-444.
[67] 李发帅, 肖建华, 王诗云, 等. 基于分块SIFT的特征提取与无人机影像拼接方法[J]. 城市勘测, 2020(5): 5-9. LI Fashuai, XIAO Jianhua, WANG Shiyun, et al. A block-based SIFT feature extraction algorithm and UAV image stitching method[J]. Urban Geotechnical Investigation & Surveying, 2020(5): 5-9.
[68] 王飞越. 基于SURF特征提取的图像配准算法研究[D]. 哈尔滨: 哈尔滨理工大学, 2018. WANG Feiyue. Study on the image registration algorithm based on SURF feature extraction[D]. Harbin: Harbin University of Science and Technology, 2018.
[69] 杨弘凡, 李航, 陈凯阳, 等. 基于改进ORB算法的图像特征点提取与匹配方法[J]. 图学学报, 2020, 41(4): 548-555. YANG Hongfan, LI Hang, CHEN Kaiyang, et al. Image feature points extraction and matching method based on improved ORB algorithm[J]. Journal of Graphics, 2020, 41(4): 548-555.
[70] 秦志钢. 改进的ORB特征提取及描述算法[J]. 集成电路应用, 2022, 39(2): 132-133. QIN Zhigang. Improved ORB feature extraction and description algorithm[J]. Applications of IC, 2022, 39(2): 132-133.
[71] SUN S Q, XU B L, SUN Y D, et al. Sparse pointcloud map fusion of multi-robot system[C] //2018 Inter-national Conference on Control, Automation and Information Sciences(ICCAIS). Hangzhou, China: IEEE, 2018: 270-274.
[72] NGUYEN V, GÄCHTER S, MARTINELLI A, et al. A comparison of line extraction algorithms using 2D range data for indoor mobile robotics[J]. Autonomous Robots, 2007, 23(2): 97-111.
[73] 龚雪晶, 慈林林, 姚康泽. 分裂合并算法的优化及并行化方案[J]. 北京理工大学学报, 2007,27(9): 801-806. GONG Xuejing, CI Linlin, YAO Kangze. An effective merge criterion and two parallel strategies for split and merge algorithm[J]. Transactions of Beijing Institute of Technology, 2007, 27(9): 801-806.
[74] 张鹏, 武刚, 任柯光. 增量式块主成分分析的焊缝图像特征提取算法[J]. 光电子·激光, 2022, 33(8): 851-857. ZHANG Peng, WU Gang, REN Keguang. Feature extraction algorithm of weld image based on incremental block principal component analysis[J]. Journal of Optoelectronics·Laser, 2022, 33(8): 851-857.
[75] 许勇, 刘树惠, 吴锐. 基于概率Hough线段检测算法的天花板影像边界提取[J]. 计算机与数字工程, 2023, 51(4): 939-942. XU Yong, LIU Shuhui, WU Rui. Ceiling image boundary extraction based on probabilistic Hough line segment detection algorithm[J]. Computer & Digital Engineering, 2023, 51(4): 939-942.
[76] 邵政毅. 基于线性回归的特征提取算法研究[D]. 无锡:江南大学, 2021. SHAO Zhengyi. Feature extraction algorithm based on linear regression[D]. Wuxi: Jiangnan University, 2021.
[77] 王植, 李慧盈, 吴立新,等. 基于RANSAC模型的机载LiDAR数据中建筑轮廓提取算法[J]. 东北大学学报(自然科学版), 2012, 33(2): 271-275. WANG Zhi, LI Huiying, WU Lixin, et al. Building outline extraction from airborne LiDAR data based on RANSAC model[J]. Journal of Northeastern University(Natural Science), 2012, 33(2): 271-275.
[78] 张宗军, 杨风暴. 基于改进最大期望聚类的遥感影像道路提取算法[J]. 激光与光电子学进展, 2020, 57(6):061005. ZHANG Zongjun, YANG Fengbao. Road extraction algorithm for remote sensing images based on improved expectation-maximization clustering[J]. Laser & Optoelectronics Progress, 2020, 57(6): 061005.
[79] ELSEBERG J, CREED R T, LAKAEMPER R. A line segment based system for 2D global mapping[C] //2010 IEEE International Conference on Robotics and Aut-omation. Anchorage, USA: IEEE, 2010: 3924-3931.
[80] SARKAR B, PAL P K, SARKAR D. Building maps of indoor environments by merging line segments extracted from registered laser range scans[J]. Robotics and Autonomous Systems, 2014, 62(4): 603-615.
[81] AMIGONI F, LI A Q. Comparing methods for merging redundant line segments in maps[J]. Robotics and Autonomous Systems, 2018, 99: 135-147.
[82] AMIGONI F, VAILATI M. A method for reducing redundant line segments in maps[C] //Fourth European Conference on Mobile Robots(ECMR). Dubrovnik, Croatia: [s.n.] , 2009: 61-66.
[83] GAO H M, ZHANG X B, LI C P, et al. Directional endpoint-based enhanced EKF-SLAM for indoor mobile robots[C] //2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics(AIM). Hong Kong, China: IEEE, 2019: 978-983.
[84] GOMEZ-OJEDA R, MORENO F A, ZUÑIGA-NOËL D, et al. PL-SLAM: a stereo SLAM system through the combination of points and line segments[J]. IEEE Transactions on Robotics, 2019, 35(3): 734-746.
[85] LIU J C, MENG Z Y. Visual SLAM with drift-free rotation estimation in Manhattan world[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6512-6519.
[86] LI F Y, FU C Y, SUN D Y, et al. Reducing redundancy in maps without lowering accuracy: a geometric feature fusion approach for simultaneous localization and mapping[J]. ISPRS International Journal of Geo-Information, 2023, 12(6): 235.
[87] AMIGONI F, GASPARINI S, GINI M. Merging partial maps without using odometry[C] //3rd International Workshop on Multi-Robot Systems. Washington, D.C., USA: Springer, 2005: 133-144.
[88] LI F Y, FU C Y, GOSTAR A K, et al. Advanced mapping using planar features segmented from 3D point clouds[C] //2019 International Conference on Control, Automation and Information Sciences(ICCAIS). Chengdu, China: IEEE, 2019: 1-6.
[89] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6):381-395
[90] BAB-HADIASHAR A, SUTER D. Robust segmentation of visual data using ranked unbiased scale estimate[J]. Robotica, 1999, 17(6): 649-660.
[91] SUN Q X, YUAN J, ZHANG X B, et al. Plane-edge-SLAM: seamless fusion of planes and edges for SLAM in indoor environments[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(4): 2061-2075.
[92] GOSTAR A K, FU C Y, CHUAH W, et al. State transition for statistical SLAM using planar features in 3D point clouds[J]. Sensors, 2019, 19(7): 1614.
[93] PAN L, WANG P F, CAO J W, et al. Dense RGB-D SLAM with planes detection and mapping[C] //IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society. Lisbon, Portugal: IEEE, 2019: 5192-5197.
[94] HUANG W H, BEEVERS K R. Topological map merging[J]. The International Journal of Robotics Research, 2005, 24(8): 601-613.
[95] DUPAS A, DAMIAND G. Comparison of local and global region merging in the topological map[C] //12th International Workshop on Combinatorial Image Analysis. Buffalo, USA: [s.n.] , 2008: 420-431.
[96] 贾松敏, 李雨晨, 王可, 等. RTM框架下基于分层拓扑结构的多机器人系统地图拼接[J]. 机器人, 2013, 35(3): 292-298. JIA Songmin, LI Yuchen, WANG Ke, et al. Map merging for multi-robot systems based on hierarchical topology structure under RTM framework[J]. Robot, 2013, 35(3): 292-298.
[97] ANDERSONE I. Distributed framework for reversible merging of heterogeneous robot maps[C] //13th International Conference on Agents and Artificial Intelligence(ICAART 2021). [S.l.] : [s.n.] , 2021: 422-430.
[98] ADLURU N, LATECKI L J, SOBEL M, et al. Merging maps of multiple robots[C] //2008 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008: 1-4.
[99] ALNOUNOU Y, PAULIK M J, KRISHNAN M, et al. Occupancy grid map merging using feature maps[C] //IASTED International Conference on Robotics and Applications. Cambridge, USA: [s.n.] , 2010: 469-475.
[100] ANDERSONE I. Probabilistic mapping with ultrasonic distance sensors[J]. Procedia Computer Science, 2017, 104: 362-368.
[101] JOO K, LEE T K, BAEK S, et al. Generating topological map from occupancy grid-map using virtual door detection[C] //IEEE Congress on Evolutionary Computation. Barcelona, Spain: IEEE, 2010: 1-6.
[102] FABRIZI E, SAFFIOTTI A. Extracting topology-based maps from gridmaps[C] //2000 IEEE International Conference on Robotics and Automation. San Francisco, USA: IEEE, 2000: 2972-2978.
[103] HOWARD A, SIDDIQI S, SUKHATME A G S. Field and service robotics[M]. Berlin: Springer, 2006: 145-153.
[104] BALAGUER B, ERINC G, CARPIN S. Combining classification and regression for WiFi localization of heterogeneous robot teams in unknown environments[C] //2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve, Portugal: IEEE, 2012: 3496-3503.
[105] MIELLE M, MAGNUSSON M, LILIENTHAL A J. Using sketch-maps for robot navigation: interpretation and matching[C] //2016 IEEE International Symposium on Safety, Security, and Rescue Robotics(SSRR). Lausanne, Switzerland: IEEE, 2016: 252-257.
[106] JIANG Z T, ZHU J H, JIN C C, et al. Simultaneously merging multi-robot grid maps at different resolutions[J]. Multimedia Tools and Applications, 2020, 79(21): 14553-14572.
[107] BAUDOUIN L, MEZOUAR Y, AIT-AIDER O, et al. Multi-modal sensors path merging[C] //13th International Conference on Intelligent Autonomous Systems(IAS). Berlin, Germany: Springer, 2016: 191-201.
[108] YUE Y F, YANG C L, WANG Y Z, et al. Multi-robot map fusion framework using heterogeneous sensors[C] //2019 IEEE International Conference on Cybernetics and Intelligent Systems(CIS)and IEEE Conference on Robotics, Automation and Mechatronics(RAM). Bangkok, Thailand: IEEE, 2019: 536-541.
[109] 吴建清, 王其峰, 厉周缘, 等. 互通式立交风险冲突识别与预警综述[J]. 山东大学学报(工学版), 2022, 52(6): 1-13. WU Jianqing, WANG Qifeng, LI Zhouyuan, et al. Review of risk conflict identification and early warning for interchange[J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 1-13.
[1] Jianqing WU,Xiuguang SONG. Review on development of simultaneous localization and mapping technology [J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 16-31.
[2] Qijie ZOU,Haoyu LI,Rubo ZHANG,Tengda PEI,Yan LIU. Survey of human-robot interaction control for autonomous driving [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 23-33.
[3] Fengyu ZHOU, Fang WAN, Jiancheng JIAO, Junjian BIAN. Design for autonomous charging system of family companion robot [J]. Journal of Shandong University(Engineering Science), 2019, 49(1): 55-65.
[4] ZHANG Li, ZHAO Chun-xia*. A new FastSLAM algorithm based on iterated EKF [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(4): 41-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!