Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (3): 158-164.doi: 10.6040/j.issn.1672-3961.0.2024.098
• Electrical Engineering • Previous Articles
JIA Xuan1, XU Jikai1, REN Yijing2, LIU Decai1, XU Qiang1, ZHANG Li2*
CLC Number:
| [1] 张勇军, 羿应棋, 李立浧, 等. 双碳目标驱动的新型低压配电系统技术展望[J]. 电力系统自动化, 2022, 46(22): 1-12. ZHANG Yongjun, YI Yingqi, LI Licheng, et al. Prospect of new low-voltage distribution system technology driven by carbon emission peak and carbon neutrality targets[J]. Automation of Electric Power Systems, 2022, 46(22): 1-12. [2] 袁学良, 杨月, 盛雪柔, 等. 碳达峰碳中和政策解析与对策建议[J]. 山东大学学报(工学版), 2023, 53(5): 132-141. YUAN Xueliang, YANG Yue, SHENG Xuerou, et al. Policy analysis and countermeasures for achieving carbon peak and carbon neutrality[J]. Journal of Shandong University(Engineering Science), 2023, 53(5): 132-141. [3] 田鑫, 牛新生, 朱秀波, 等. 低碳背景下山东电网最优降损策略及评估方法[J]. 电力系统自动化, 2014, 38(17): 67-72. TIAN Xin, NIU Xinsheng, ZHU Xiubo, et al. Optimal strategy and assessment method for minimizing power loss of Shandong power network under low-carbon background[J]. Automation of Electric Power Systems, 2014, 38(17): 67-72. [4] QUEIROZ L M O, ROSELLI M A, CAVELLUCCI C, et al. Energy losses estimation in power distribution systems[J]. IEEE Transactions on Power Systems, 2012, 27(4): 1879-1887. [5] 袁旭峰, 鹿振国, 许文强, 等. 基于前推回代三相潮流的低压台区理论线损计算研究[J]. 电测与仪表, 2014, 51(9): 1-5. YUAN Xufeng, LU Zhenguo, XU Wenqiang, et al. Study on the theoretical line loss calculation of low-voltage transformer areas based on forward-back sweep three-phase power flow algorithm[J]. Electrical Measure-ment & Instrumentation, 2014, 51(9): 1-5. [6] 马喜平, 贾嵘, 梁琛, 等. 高比例新能源接入下电力系统降损研究综述[J]. 电网技术, 2022, 46(11): 4305-4315. MA Xiping, JIA Rong, LIANG Chen, et al. Review of researches on loss reduction in context of high penetration of renewable power generation[J]. Power System Technology, 2022, 46(11): 4305-4315. [7] 于一潇, 杨佳峻, 杨明, 等. 基于深度强化学习的风电场储能系统预测决策一体化调度[J]. 电力系统自动化, 2021, 45(1): 132-140. YU Yixiao, YANG Jiajun, YANG Ming, et al. Prediction and decision integrated scheduling of energy storage system in wind farm based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2021, 45(1): 132-140. [8] 赵磊, 栾文鹏, 王倩. 应用AMI数据的低压配电网精确线损分析[J]. 电网技术, 2015, 39(11): 3189-3194. ZHAO Lei, LUAN Wenpeng, WANG Qian. Accurate line loss analysis of LV distribution network using AMI data[J]. Power System Technology, 2015, 39(11): 3189-3194. [9] 章博, 卢峰, 董寒宇, 等. 基于决策树和数据驱动的零电量用户筛选方法[J]. 山东大学学报(工学版), 2019, 49(5): 29-36. ZHANG Bo, LU Feng, DONG Hanyu, et al. None-consumption users filtering algorithm based on decision tree and data-driven methods[J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 29-36. [10] 王守相, 周凯, 苏运. 基于随机森林算法的台区合理线损率估计方法[J]. 电力自动化设备, 2017, 37(11): 39-45. WANG Shouxiang, ZHOU Kai, SU Yun. Line loss rate estimation method of transformer district based on random forest algorithm[J]. Electric Power Automation Equipment, 2017, 37(11): 39-45. [11] YU H L, SUN C Y, YANG X B, et al. Fuzzy support vector machine with relative density information for classifying imbalanced data[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(12): 2353-2367. [12] 马丽叶, 刘建恒, 卢志刚, 等. 基于深度置信网络的低压台区理论线损计算方法[J]. 电力自动化设备, 2020, 40(8): 140-146. MA Liye, LIU Jianheng, LU Zhigang, et al. Theoretical line loss calculation method of low voltage transform district based on deep belief network[J]. Electric Power Automation Equipment, 2020, 40(8): 140-146. [13] 李亚, 刘丽平, 李柏青, 等. 基于改进K-Means聚类和BP神经网络的台区线损率计算方法[J]. 中国电机工程学报, 2016, 36(17): 4543-4552. LI Ya, LIU Liping, LI Baiqing, et al. Calculation of line loss rate in transformer district based on improved K-Means clustering algorithm and BP neural network[J]. Proceedings of the CSEE, 2016, 36(17): 4543-4552. [14] REN Y J, ZHANG L, WANG H B,et al. Calculation method of the line loss rate in transformer district based on neural network with optimized input variables[C] //2020 IEEE 3rd Student Conference on Electrical Machines and Systems(SCEMS). Jinan, China: IEEE, 2020: 988-994. [15] 王丽, 于明仟, 刘文鹏, 等. 面向类不平衡数据的K近邻偏标记学习算法[J]. 山东大学学报(工学版), 2022, 52(3): 18-24. WANG Li, YU Mingqian, LIU Wenpeng, et al. K-nearest neighbor based partial label learning algorithm for class imbalanced data[J]. Journal of Shandong Uni-versity(Engineering Science), 2022, 52(3): 18-24. [16] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. [17] KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL].(2022-12-10)[2024-05-08]. https://arxiv.org/abs/1312.6114v11 [18] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C] //Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT, 2014: 2672-2680. [19] CHEN Y Z, WANG Y S, KIRSCHEN D, et al. Model-free renewable scenario generation using generative adversarial networks[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3265-3275. [20] WANG C G, SHARIFNIA E, GAO Z, et al. Generating multivariate load states using a conditional variational autoencoder[J]. Electric Power Systems Research, 2022, 213: 108603. [21] 王德文, 杨凯华. 基于生成式对抗网络的窃电检测数据生成方法[J]. 电网技术, 2020, 44(2): 775-782. WANG Dewen, YANG Kaihua. A data generation method for electricity theft detection using generative adversarial network[J]. Power System Technology, 2020, 44(2): 775-782. [22] UZAIR M, JAMIL N. Effects of hidden layers on the efficiency of neural networks[C] //2020 IEEE 23rd Inter-national Multitopic Conference(INMIC). Bahawalpur, Pakistan: IEEE, 2020: 9318195. |
| [1] | Tongyu JIANG, Fan CHEN, Hongjie HE. Lightweight face super-resolution network based on asymmetric U-pyramid reconstruction [J]. Journal of Shandong University(Engineering Science), 2022, 52(1): 1-8. |
| [2] | YIN Xiaomin, MENG Xiangjian, HOU Kunming, CHEN Yaxiao, GAO Feng. Correction method for historical output data of photovoltaic power plant considering spatial correlation based on artificial neural network [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 118-123. |
| [3] | Junsan ZHANG,Qiaoqiao CHENG,Yao WAN,Jie ZHU,Shidong ZHANG. MIRGAN: a medical image report generation model based on GAN [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 9-18. |
| [4] | ZHANG Yuefang, DENG Hongxia, HU Chunxiang, QIAN Guanyu, LI Haifang. Hippocampal segmentation combining residual attention mechanism and generative adversarial networks [J]. Journal of Shandong University(Engineering Science), 2020, 50(6): 76-81. |
| [5] | Chunyang LI,Nan LI,Tao FENG,Zhuhe WANG,Jingkai MA. Abnormal sound detection of washing machines based on deep learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 108-117. |
| [6] | Zhifu CHANG,Fengyu ZHOU,Yugang WANG,Dongdong SHEN,Yang ZHAO. A survey of image captioning methods based on deep learning [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 25-35. |
| [7] | CHEN Zhiwen, PENG Tao, YANG Chunhua , HE Zhangming, YANG Chao, YANG Xiaoyue. A fault detection method based on modified canonical correlation analysis [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 44-50. |
| [8] | HU Yu-jing,ZHANG Jian-hua,REN Sheng-feng,BAI Wen-feng . Intelligent control of the discharge gap during UVEDM [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 11-14 . |
|
||