Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (2): 143-155.doi: 10.6040/j.issn.1672-3961.0.2024.060

• Civil Engineering • Previous Articles     Next Articles

Study on the strength of single fracture rock mass affected by temperature differences under tensile-shear stress

ZHANG Yan, LAI Qianlong*, REN Xiang   

  1. School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
  • Published:2025-04-15

Abstract: In order to study the effect of temperature difference on the mechanical properties of fractured rock mass under tensile-shear stress, the expression of fracture strength of single fractured rock mass under temperature difference was derived based on energy and linear elastic fracture mechanics theory from the phenomenon of rock mass tensile-shear failure in high rock temperature tunnels and slopes. The strength of fractured rock and the mechanism of crack growth and evolution under tensile and shear stress were systematically studied by combining the factors of fracture inclination, horizontal pressure and temperature stress with numerical method. The results showed that under tensile-shear stress conditions, as the temperature difference increasing from 5 ℃ to 15 ℃, the rock thermal expansion occured and the internal stress of fractured rock mass increased. When the fracture inclination angle was from 155° to the direction of the maximum shear stress of 180°, the main shear stress was easier to act on the fracture surface, which reduced the resistance to shear and the initial crack strength, thus promoted the fracture shear and spreaded. This study revealed the strength characteristics of single fissure rock mass under the condition of temperature difference influenced by many factors, which was helpful for engineers to make preliminary assessment of the stability of rock mass in the design stage, so as to formulate corresponding construction plans and preventive measures.

Key words: single fracture rock mass, temperature difference, fracture inclination angle, tensile-shear stress, initial crack strength

CLC Number: 

  • TU452
[1] 王磊, 商瑞豪, 刘怀谦, 等. 含多裂隙煤体裂纹细观演化规律与相互作用机制[J]. 中国矿业大学学报, 2023, 52(2): 300-313. WANG Lei, SHANG Ruihao, LIU Huaiqian, et al. Microcrack evolution law and interaction mechanism of coal with multiple cracks[J]. Journal of China University of Mining & Technology, 2023, 52(2): 300-313.
[2] 罗丹旎, 卢思航, 苏国韶, 等. 含预制单裂隙花岗岩的真三轴单面临空岩爆试验研究[J]. 岩土力学, 2023, 44(1): 75-87. LUO Danni, LU Sihang, SU Guoshao, et al. Experimental study on rock burst of granite with prefabricated single crack under true-triaxial stress condition with a free face[J]. Rock and Soil Mechanics, 2023, 44(1): 75-87.
[3] WANG Y Y, DENG H C, DENG Y, et al. Study on crack dynamic evolution and damage-fracture mechanism of rock with pre-existing cracks based on acoustic emission location[J]. Journal of Petroleum Science and Engineering, 2021, 201: 108420.
[4] 易婷, 唐建新, 王艳磊. 裂隙倾角及数目对岩体强度和破坏模式的影响[J]. 地下空间与工程学报, 2021, 17(1): 98-106. YI Ting, TANG Jianxin, WANG Yanlei. Effect of fracture dip angle and number on mechanical properties and failure modes of rock mass[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(1): 98-106.
[5] 王娟, 王星, 袁超, 等. 不同裂隙数量砂岩体力学性状演变规律试验研究[J]. 河南科技大学学报(自然科学版), 2023, 44(5): 56-64. WANG Juan, WANG Xing, YUAN Chao, et al. Experimental study on evolution law of mechanical properties of sandstone with different fracture numbers[J]. Journal of Henan University of Science and Technology(Natural Science), 2023, 44(5): 56-64.
[6] 梁东旭, 张农, 荣浩宇. 交叉裂隙岩体裂纹扩展试验及混合有限-离散元数值模拟研究[J]. 岩土力学, 2023, 44(4): 1217-1229. LIANG Dongxu, ZHANG Nong, RONG Haoyu. Experiment and hybrid finite-discrete element modelling of crack propagation in cross-fissured rock masses[J]. Rock and Soil Mechanics, 2023, 44(4): 1217-1229.
[7] 赵志宏, 郭铁成, 林涛, 等. 考虑粗糙度影响的裂隙岩体开挖损伤区分布规律[J]. 隧道与地下工程灾害防治, 2019, 1(3): 77-86. ZHAO Zhihong, GUO Tiecheng, LIN Tao, et al. Characteristics of excavation damaged zone in fractured rock mass[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(3): 77-86.
[8] 黄笑, 肖培伟, 董林鹭, 等. 高地应力地下洞室群开挖过程岩体力学响应及破坏机制[J]. 隧道与地下工程灾害防治, 2021, 3(3): 85-93. HUANG Xiao, XIAO Peiwei, DONG Linlu, et al. Mechanical response and failure mechanism of rock mass during excavation of underground caverns under high geostress[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(3): 85-93.
[9] 唐红梅, 张金浩, 陈洪凯. 含裂隙岩石的受压破坏机理研究[J]. 工程地质学报, 2016, 24(3): 363-368. TANG Hongmei, ZHANG Jinhao, CHEN Hongkai. Laboratory tests on failure mechanism of fractured rock under compression[J]. Journal of Engineering Geology, 2016, 24(3): 363-368.
[10] 范景伟, 何江达. 含定向闭合断续节理岩体的强度特性[J]. 岩石力学与工程学报, 1992, 11(2): 190-199. FAN Jingwei, HE Jiangda.The strength behavior of rockmasses containing oriented and closed intermittent joints[J]. Chinese Journal of Rock Mechanics and Engineering, 1992, 11(2): 190-199.
[11] 朱珍德, 胡定. 裂隙水压力对岩体强度的影响[J]. 岩土力学, 2000, 21(1): 64-67. ZHU Zhende, HU Ding. The effect of intestitial water pressure on rock mass strength[J]. Rock and Soil Mechanics, 2000, 21(1): 64-67.
[12] 李建林, 哈秋. 节理岩体拉剪断裂与强度研究[J]. 岩石力学与工程学报, 1998, 17(3): 259-266. LI Jianlin, HA Qiu. A study of tensile-shear crack and strength related to jointed rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(3): 259-266.
[13] 李建林. 三峡工程岩石拉剪断裂特性的试验研究[J]. 地下空间, 2002, 22(2): 149-152. LI Jianlin. A study on tension-shear crack property of rock related to the Three Gorges Project[J]. Underground Space, 2002, 22(2): 149-152.
[14] RAMSEY J M, CHESTER F M. Hybrid fracture and the transition from extension fracture to shear fracture[J]. Nature, 2004, 428: 63-66.
[15] 岑夺丰, 刘超, 黄达. 拉剪应力作用下单裂隙砂岩裂纹扩展规律试验研究[J]. 煤炭学报, 2021, 46(增刊2): 731-739. CEN Duofeng, LIU Chao, HUANG Da. Experimental study on crack propagation law of single fracture sandstone under tensile shear stress[J]. Journal of China Coal Society, 2021, 46(Suppl.2): 731-739.
[16] 周超彪, 刘东, 姜清辉. 拉剪作用下类岩石试样的力学特性与损伤破坏机制[J]. 岩土力学, 2021, 42(12): 3335-3344. ZHOU Chaobiao,LIU Dong,JIANG Qinghui. Mechanical properties and failure mechanisms of the rocklike specimens under tension shear effects[J]. Rock and Soil Mechanics, 2021, 42(12): 3335-3344.
[17] 黄达, 郭颖泉, 朱谭谭, 等. 法向卸荷条件下含单裂隙砂岩剪切强度与破坏特征试验研究[J]. 岩石力学与工程学报, 2019, 38(7): 1297-1306. HUANG Da, GUO Yingquan, ZHU Tantan, et al. Experimental investigation on shear strength and failure characteristics of sandstone with a single preexisting flaw under unloading normal stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1297-1306.
[18] CEN D F, HUANG D. Direct shear tests of sandstone under constant normal tensile stress condition using a simple auxiliary device[J]. Rock Mechanics and Rock Engineering, 2017, 50(6): 1425-1438.
[19] 岑夺丰, 刘畅, 黄达. 灰岩层面拉剪力学特性及层面起伏效应研究[J]. 岩土力学, 2022, 43(增刊1): 77-87. CEN Duofeng, LIU Chang, HUANG Da. Study on tensile-shear mechanical characteristics of limestone bedding plane and bedding plane fluctuation effect[J]. Rock and Soil Mechanics, 2022, 43(Suppl.1): 77-87.
[20] 王志文, 赵海军, 马凤山, 等. 非均质共面断续节理岩体拉伸剪切破裂机制研究[J]. 工程地质学报, 2019, 27(5): 989-999. WANG Zhiwen, ZHAO Haijun, MA Fengshan, et al. Numerical study on tension-shear failure mechanism of heterogeneous coplanar intermittent jointed rock mass[J]. Journal of Engineering Geology, 2019, 27(5): 989-999.
[21] 陈镜丞. 湿热作用下粉砂质泥岩的渗流、力学特性及裂隙演化规律研究[D]. 长沙: 长沙理工大学, 2019. CHEN Jingcheng. Study on seepage, mechanical properties and fracture evolution of silty mudstone under hygrothermal action[D].Changsha: Changsha University of Science & Technology, 2019.
[22] RUTQVIST J, BARR D, DATTA R, et al. Coupled thermal-hydrological-mechanical analyses of the Yucca Mountain drift scale test-comparison of field measurements to predictions of four different numerical models[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(5/6): 680-697.
[23] ZHAO Z H. Thermal influence on mechanical properties of granite: a microcracking perspective[J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 747-762.
[24] 王伏春, 黄守国, 黄聪. 高温后预制裂纹花岗岩损伤特性研究[J]. 岩土工程技术, 2023, 37(4): 415-421. WANG Fuchun, HUANG Shouguo, HUANG Cong. Damage characteristics of prefabricated fractured granite after high temperature[J]. Geotechnical Engineering Technique, 2023, 37(4): 415-421.
[25] 孙浩, 苏楠, 金爱兵, 等. 温度对不同尺寸砂岩巴西劈裂特性影响[J]. 工程科学学报, 2022, 44(1): 26-38. SUN Hao, SU Nan, JIN Aibing, et al. Effects of temperature on Brazilian splitting characteristics of sandstone with different sizes[J]. Chinese Journal of Engineering, 2022, 44(1): 26-38.
[26] 陈斌. 高温高压隧道节理围岩卸荷效应与变形破坏机制研究[D]. 重庆: 重庆交通大学, 2023. CHEN Bin. Study on unloading effect and deformation failure mechanism of jointed surrounding rock in high temperature and high pressure tunnels[D].Chongqing: Chongqing Jiaotong University, 2023.
[27] 张岩, 李宁, 于海鸣, 等. 温度应力对裂隙岩体强度的影响研究[J]. 岩石力学与工程学报, 2013, 32(增刊1): 2660-2668. ZHANG Yan, LI Ning, YU Haiming, et al. Study on the influence of temperature stress on the strength of fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Suppl.1): 2660-2668.
[28] 薛守义, 刘超. 断续节理岩体弹性断裂理论研究[J]. 山东建筑大学学报, 2011, 26(1): 44-49. XUE Shouyi, LIU Chao. Study on elastic fracture theory of interruption jointed rock mass[J]. Journal of Shandong Jianzhu University, 2011, 26(1): 44-49.
[29] 弓满峰. 均匀温度场中矩形薄板屈曲的差分解[D]. 大连: 大连理工大学, 2002. GONG Manfeng. Difference decomposition of buckling of rectangular thin plates in uniform temperature field[D].Dalian: Dalian University of Technology, 2002.
[30] 弓满锋, 喻永声, 梅芳. 矩形薄板热屈曲应力的数值分析[J]. 汕头大学学报(自然科学版), 2004, 19(4): 44-48. GONG Manfeng, YU Yongsheng, MEI Fang. Numerical study for thermal buckling stress problem of the thin rectangular plate[J]. Journal of Shantou University(Natural Science Edition), 2004, 19(4): 44-48.
[31] 黄达, 金华辉, 黄润秋. 拉剪应力状态下岩体裂隙扩展的断裂力学机制及物理模型试验[J]. 岩土力学, 2011, 32(4): 997-1002. HUANG Da, JIN Huahui, HUANG Runqiu. Mechanism of fracture mechanics and physical model test of rocks crack expanding under tension-shear stress[J]. Rock and Soil Mechanics, 2011, 32(4): 997-1002.
[32] 中国航空研究院. 应力强度因子手册[M]. 北京: 科学出版社, 1981: 30-31.
[33] 戴俊. 岩石动力学特性与爆破理论[M]. 2版. 北京: 冶金工业出版社, 2013: 48-51.
[34] 张明明. T应力对岩石断裂韧性及裂纹起裂的影响[D]. 成都: 西南石油大学, 2017. ZHANG Mingming. The infuence of T-stress on rock fracture toughness and crack initial angle[D].Chengdu: Southwest Petroleum University, 2017.
[35] ASHBY M F, HALLAM NÉE, COOKSLEY S D. The failure of brittle solids containing small cracks under compressive stress states[J]. Acta Metallurgica, 1986, 34(3): 497-510.
[1] ZHANG Xu-tao1,2, ZHANG Qiang-yong1, CAO Guan-hua1, XU Xiao-bin1. Effects on iron-barite-sand mixed similar material  properties  induced by molding pressure [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(2): 89-95.
[2] CHEN Fang1, ZHANG Qiang-yong1, YANG Wen-dong1, 2, ZHANG Xu-tao1, LI Wen-gang3, WANG Jian-hong3, HE Ru-ping3. Shear creep empirical equations and creep parameter numerical inversion for dam zone rock mass [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(6): 93-99.
[3] CUI Xin-zhuang ,JIN Qing,DING Hua . A modified Mohr-Coulomb constitutive model and its application [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 122-125 .
[4] HU Taotao, LI Yu, GAO Xianchao. Dynamic characteristics and constitutive model of carbonaceous slate considering strain rate and bedding inclination angle [J]. Journal of Shandong University(Engineering Science), 2024, 54(5): 122-131.
[5] CHEN Yunjuan, JING Yi, JIA Runzhi, WANG Jun, YANG Zhuo, LUO Pingli. Representation of discontinuous deformation and hydraulic weakening effect of rock masses failure based on finite difference method [J]. Journal of Shandong University(Engineering Science), 2023, 53(5): 103-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 6 -14 .
[2] MENG Qing-bin,XING Li-ting,TENG Zhao-xia . The relationship of spring protection and transformation pattern between
precipitation groundwater and surface water in the Jinan spring region
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(5): 82 -87 .
[3] ZHAO Zhan-shan1,2, ZHANG Jing3, SUN Lian-kun, DING Gang1. Design of self-adaptive sliding mode controller with finite time convergence[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(4): 74 -78 .
[4] CHEN Enyu, DENG Siwen, CHEN Fangming, MA Chishuai. Development of a novel rock strength estimation model based on TBM boring performance[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 7 -13 .
[5] XUE Yi-guo,LI Shu-cai,ZHANG Qing-song,LI Shu-chen,SU Mao-xin,LIU Qin .

Prediction and early-warning technology of geological hazards in tunnel informational construction

[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(5): 25 -30 .
[6] GE Kairong, CHANG Faliang, DONG Wenhui. Sparse representation tracking method based on locality sensitive histogram[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(5): 14 -19 .
[7] MA Qi-Hua, WANG Yi-Tai. Application of the high density resistivity method to surrvey huge empty water  outside of a coal mine[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(4): 107 -111 .
[8] WU Jun-fei ,WANG Wei-qiang ,HU De-dong ,CUI Yu-liang , . he explosive energy analysis and calculation of pingyin urea reactor body[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 80 -83 .
[9] TIAN Wei,QIAO Yi-zheng,MA Zhi-qiang . Offline Chinese signature verification based on the second feature extraction by DWT[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(3): 55 -59 .
[10] ZHANG Jian,WU Yao-hua,LIU Pei,WANG Yan-yan . Hybrid hub-and-spoke network planning of road express freight[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(5): 6 -9 .