Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (1): 77-85.doi: 10.6040/j.issn.1672-3961.0.2023.266
• Machine Learning & Data Mining • Previous Articles
WU Kaili, CHEN Jingrong*
CLC Number:
[1] MAZZA M, COLA G, TESCONI M. Modularity-based approach for tracking communities in dynamic social networks[J]. Knowledge-Based Systems, 2023, 281: 111067. [2] LI W, WANG J, CAI J. New label propagation algorithms based on the law of universal gravitation for community detection[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 627: 129140. [3] CHENG S, YANG S, CHENG X, et al. An effective overlapping community merging method oriented to multidimensional attribute social networks[J]. Expert Systems, 2023, 40(10): 13433. [4] RANI S, KUMAR M. Ranking community detection algorithms for complex social networks using multilayer network design approach[J]. International Journal of Web Information Systems, 2022, 18(5): 310-341. [5] FANG C, LIN Z Z. Overlapping communities detection based on cluster-ability optimization[J]. Neuro-computing, 2022, 494:336-345. [6] YOU X, MA Y, LIU Z. A three-stage algorithm on community detection in social networks[J]. Knowledge-Based Systems, 2020, 187(1):104822. [7] BERAHMAND K, BOUYER A. A link-based similarity for improving community detection based on label propagation algorithm[J]. Journal of Systems Science and Complexity, 2019, 32(3): 737-758. [8] XU G Q, MENG L, TU D Q, et al. LCH: a local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks[J]. Chinese Physics B, 2021, 30(8): 566-574. [9] ZHANG J, ZHANG G, YANG J, et al. Local community detection algorithm based on hierarchical clustering[J]. Journal of Information & Computational Science, 2015, 12(7): 2805-2813. [10] AGHAALIZADEH S, AFSHORD S T, BOUYER A, et al. A three-stage algorithm for local community detection based on the high node importance ranking in social networks[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 563:125420. [11] 杨旭华,沈敏. 基于特征向量局部相似性的社区检测算法[J]. 计算机科学, 2020, 47(2):56-64. YANG Xuhua, SHEN Min. Community detection algorithm based on local similarity of feature vectors[J]. Computer Science, 2020, 47(2): 56-64. [12] BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics Theory & Experiment, 2008, 2008(3): 10008. [13] BERGSTROM C T, ROSVALL M. Maps of random walks on complex networks reveal community structure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(4): 1118-1123. [14] RAGHAVAN U N, ALBERT R, KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E, 2007, 76(9): 036106. [15] LIU X, MURATA T. Advanced modularity-specialized label propagation algorithm for detecting communities in networks[J]. Physica A: Statal Mechanics and its Applications, 2010, 389(7): 1493-1500. [16] XING Y, MENG F, ZHOU Y, et al. A node influence based label propagation algorithm for community detection in networks[J]. The scientific world journal, 2014, 2014: 627581. [17] XU X, YURUK N, FENG Z, et al. Scan: a structural clustering algorithm for networks[C] //Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. New York, USA, Association for Computing Machinery, 2007: 824-833. [18] HU F, LIU Y. A new algorithm CNM-Centrality of detecting communities based on node centrality[J].Physica A: Statistical Mechanics and Its Applications, 2016, 446:138-151. [19] BERAHMAND K, BOUYER A, VASIGHI M. Community detection in complex networks by detecting and expanding core nodes through extended local similarity of nodes[J]. IEEE Transactions on Computational Social Systems, 2018, 5(4): 1021-1033. [20] 蔡威林,葛斌.基于影响度的标签传播算法[J].佳木斯大学学报:自然科学版, 2022, 40(1):38-40. CAI Weilin, GE Bin. Label propagation algorithm based on influence degree[J]. Journal of Jiamusi University: Natural Science Edition, 2022, 40(1): 38-40. [21] SORENSEN T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons[J]. Biologiske Skrifter, 1948, 5: 1-5. [22] WU H, DONG S, RAO B. Latitudinal trends in the structure, similarity and beta diversity of plant communities invaded by Alternantheraphiloxeroides in heterogeneous habitats[J]. Frontiers in Plant Science, 2022, 13: 1021337. [23] BOUYER A, SABAVAND MONFARED M, NOURANI E, et al. Discovering overlapping communities using a new diffusion approach based on core expanding and local depth traveling in social networks[J]. International Journal of General Systems, 2023, 52(8): 991-1019. [24] WANG T,YIN L,WANG X. A community detection method based on local similarity and degree clustering information[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 490: 1344-1354. [25] FORTUNATO S, HRIC D. Community detection in networks: a user guide[J]. Physics Reports, 2016, 659:1-44. [26] GIRVAN M, NEWMAN M J. Community structure in social and biological networks[J].Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826. [27] CLAUSET A, NEWMAN M E J, MOORE C. Finding community structure in very large networks[J]. PhysicalReview E, 2004, 70(6): 066111. [28] ZENG A, ZHANG C J. Ranking spreaders by decomposing complex networks[J]. Physics Letters A, 2013, 377(14): 1031-1035. [29] ZHANG X Z, ZHANG Y B, CHEN Z L, et al. Community extraction algorithm for large-scale online social networks[J].Journal of Northeastern University, 2015, 36(3): 342-345. [30] YANG J, LESKOVEC J. Defining and evaluating network communities based on ground-truth[J].Knowledge & Information Systems, 2012, 42(1): 181-213. [31] LI C, TANG Y, LIN H, et al. Parallel overlapping community detection algorithm in complex networks based on label propagation[J]. Scientia Sinica Informationis, 2016, 46(2): 212-227. |
No related articles found! |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 18
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 66
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|