Journal of Shandong University(Engineering Science) ›› 2022, Vol. 52 ›› Issue (3): 25-33.doi: 10.6040/j.issn.1672-3961.0.2022.024

Previous Articles    

Detection of upper limb musculoskeletal abnormality based on improved dual path network

HUANG Caiyun1, CHEN Dewu2, HE Jifu1, HU Yi1, WANG Nan1, CHEN Pei1   

  1. 1. School of Physical Education and Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China;
    2. Institute of Geophysics, Research Institute of Petroleum Exploration &
    Development-Northwest, Lanzhou 730020, Gansu, China
  • Published:2022-06-23

CLC Number: 

  • TP399
[1] WALSH D. Recent progress in radiography[J]. Hospital, 1899, 27(680):5-7.
[2] JORDAN A C. Duodenal obstruction as shown by radiography[J]. British Medical Journal, 1911, 1(2629):1172-1174.
[3] WAITE S, SCOTT J, GALE B, et al. Interpretive error in radiology[J]. American Journal of Roentgenology, 2016, 208(4):1-11.
[4] ELIZABETH A K, KEVIN S B, ROBERT T C, et al. Long radiology workdays reduce detection and accom-modation accuracy[J]. Journal of the American College of Radiology Jacr, 2010, 7(9):698-704.
[5] NAKAJIMA Y, YAMADA K, IMAMURA K. et al. Radiologist supply and workload: international comparison[J]. Radiat Med, 2008(26):455-465.
[6] NGAN K H, GARCEZ A D, KNAPP K M, et al. Making densenet interpretable a case study in clinical radiology[J/OL].(2019-12-05)[2021-12-26].
[7] RAJPURKAR P, IRVIN J, BAGUL A, et al. MURA:large dataset for abnormality detection in musculoskeletal radiographs[J/OL].(2018-05-22)[2021-12-26].
[8] WOOLF A D, PFLEGER B. Burden of major muscu-loskeletal conditions[J]. Bulletin of the World Health Organisation, 2003, 81(9):646-656.
[9] SHIE C K, CHUANG C H, CHOU C N, et al. Transfer representation learning for medical image analysis[C] // 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC). Milan, Italy: IEEE, 2015: 711-714.
[10] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[11] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436.
[12] 周涛, 霍兵强, 陆惠玲,等. 残差神经网络及其在医学图像处理中的应用研究[J]. 电子学报, 2020, 48(7): 1436-1447. ZHOU Tao, HUO Bingqiang, LU Huiling, et al. Research on residual neural network and its application on medical image processing[J]. Acta Electronica Sinica, 2020, 48(7): 1436-1447.
[13] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[14] SIMONYAN K, ZISSERMAN A. Verydeep convolutional networks for large-scale image recognition[C] //2015 3rd International Conference on Learning Repres-entations(ICLR). San Diego, USA: Conference Track Pro-ceedings, 2015: 1826-1832.
[15] SZEGEDY C, LIU W, JIA Y, et al. Goingdeeper with convolutions[C] //2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Boston, USA:IEEE, 2015: 1-9.
[16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C] //Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition( CVPR). Las Vegas, USA: IEEE, 2016: 770-778.
[17] XIE S, GIRSHICK R,P DOLLÁR, et al. Aggregated residual transformations for deep neural networks[C] //2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Hawaii, USA: IEEE, 2017: 5987-5995.
[18] HUANG G, LIU Z, LAURENS V D M, et al. Densely connected convolutional networks[C] //2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Hawaii, USA: IEEE, 2017: 2261-2269.
[19] CHEN Y P, LI J N, XIAO H X, et al. Dual path networks[J/OL].(2017-08-01)[2021-12-26].
[20] 李海山, 陈德武, 吴杰,等. 叠前随机噪声深度残差网络压制方法[J]. 石油地球物理勘探, 2020, 55(3): 493-503. LI Haishan, CHEN Dewu, WU Jie, et al. Pre-stack random noise suppression with deep residual network[J]. Oil Geophysical Prospecting, 2020, 55(3): 493-503.
[21] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmen-tation[J]. Lect Notes Comput Sci, 2015(9351): 234-241.
[22] 冯毅博, 仇大伟, 曹慧, 等. 基于深度可分离稠密网络的新型冠状病毒肺炎X线图像检测方法研究[J]. 生物医学工程学杂志, 2020(4): 557-565. FENG Yibo, QIU Dawei, CAO Hui, et al. Research on coronavirus disease 2019(COVID-19)detection method based on depthwise separable DenseNet in chest X-ray images[J]. Journal of Biomedical Engineering, 2020(4): 557-565.
[23] JIA D, WEI D, SOCHER R, et al. ImageNet:a large-scale hierarchical image database[J]. Proc of IEEE Computer Vision & Pattern Recognition, 2009:248-255.
[24] KINGMA D, BA J. Adam:a method for stochastic optimization[J/OL].(2017-01-30)[2021-12-26].
[25] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2):336-359.
[26] ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Learningdeep features for discriminative localization[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, USA: IEEE, 2016: 2921-2929.
[27] BELLO I, ZOPH B, LE Q, et al. Attentionaugmented convolutional networks[C] //2019 IEEE/CVF Interna-tional Conference on Computer Vision(ICCV). Seoul, Korea: IEEE, 2019: 3286-3295.
[1] Pengcheng ZHAO,Fuquan ZHANG,Xubing YANG,Yin WU. Optimal deployment strategy of forest fire monitoring nodes based on visualization [J]. Journal of Shandong University(Engineering Science), 2019, 49(1): 30-35, 40.
[2] Zhenbing LIU,Xusheng FANG,Huihua YANG,Rushi LAN. The diagnosis of Alzheimer's disease classification based on multi-scale residual neutral network [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 1-7, 18.
[3] CHEN Jiajie, WANG Jinfeng. Method for solving Choquet integral model based on ant colony algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 81-87.
[4] DAI Hongwei, YANG Yu, ZHONG Zhaoman, LI Cunhua. Improved quantum crossover immune clonal algorithm and its application [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(2): 17-21.
[5] GUO Hui-ling, WANG Shi-tong*, YAN Xiao-bo. A novel method for face recognition based on generalized rotation invariant kernel [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 71-79.
[6] ZHOU Xiao-lin,ZENG Guang-zhou . P2P-based workflow management system [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(5): 89-94 .
[7] WU Wan-qing, ZHOU Guo-long, WANG Qiao, ZHAO Yong-xin. Research of balanced Boolean functions with high nonlinearity based on GSA [J]. Journal of Shandong University(Engineering Science), 2022, 57(5): 74-84.
Full text



No Suggested Reading articles found!