Journal of Shandong University(Engineering Science) ›› 2021, Vol. 51 ›› Issue (4): 106-110.doi: 10.6040/j.issn.1672-3961.0.2020.306

Previous Articles    

Flow characteristics of dual inner-tube chimney in thermal power plant

LI Xu1, AN Chunguo1, WANG Zhaoyang1, WANG Zhan2, JI Wanxiang3*   

  1. 1. Shandong Electric Power Engineering Consulting Institute Co., Ltd., Jinan 250013, Shandong, China;
    2. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China;
    3. Institute of Thermal Science and Technology, Shandong University, Jinan 250061, Shandong, China
  • Published:2021-08-18

Abstract: Computational fluid dynamics method was used to analyze the flow characteristics of conventional chimney, including the distribution of flow dead zone, the distribution of pressure drop, and the influence of cross-sectional area and side area on flow resistance. According to the large pressure drop in semicircular inner tube, a kind of superior arcuate inner tube was proposed, which could effectively combine the advantages of circular tube and semi-circular tube, and had the characteristics of compact structure, small cross-sectional area and low flow pressure. The results showed that, under the same cross-sectional area, the pressure drop of the superior arcuate tube was smaller than that of the semicircular tube, and slightly larger than that of the circular tube. In order to ensure the same pressure drop as the circular tube, the cross-sectional area of the semicircular tube was increased by about 5%, while the superior arcuate tube should be increased by about 3%. The results provided a reference for the design of the inner tube of power plant chimney.

Key words: thermal power plant, dual inner-tube chimney, superior arcuate, flow property, pressure drop

CLC Number: 

  • TB126
[1] 中国冶金建设协会. 烟囱设计规范: GB 50051—2013[S]. 北京: 中国标准出版社, 2013. China Metallurgical construction association. Code for design of chimneys: GB 50051—2013[S]. Beijing: Standards Press of China, 2013.
[2] 杨小兵,何丽婷,田树桐,等. 大型火电厂悬挂式钢内筒烟囱设计研究[J]. 特种结构, 2008, 25(2): 72-74. YANG Xiaobing, HE Liting, TIAN Shutong, et al. Design and research of suspended steel tube chimney in large thermal power plant[J]. Special Sturcture, 2008, 25(2): 72-74.
[3] 黄惠嘉, 张兰春. 套筒式多管烟囱筒首排烟内筒中心矩的控制探讨[J]. 特种结构, 2009, 26(3): 41-44. HUANG Huijia, ZHANG Lanchun. Discussion on the control of the central moment of the inner tube of the chimney [J]. Special Structure, 2009, 26(3): 41-44.
[4] JOHN A D, GAIROLA A. GANJU E. Design wind loads on reinforced concrete chimney-an experimental case study [J]. Procedia Engineering, 2011, 14:1252-1257.
[5] LONGARINI N, ZUCCA M. A chimneys seismic assessment by a tuned mass damper[J]. Engineering Structures, 2014, 79: 290-296.
[6] 王勇强,张凌伟,李兴利,等. 湿法脱硫烟囱防腐方案选择[J]. 热力发电, 2014, 43(2): 5-7. WANG Yongqiang, ZHANG Lingwei, LI Xingli, et al. Selection of anticorrosion scheme for chimney in power stations with FGD[J]. Thermal Power Generation, 2014, 43(2): 5-7.
[7] 侯庆伟,石荣桂,李永臣,等. 湿法烟气脱硫系统的 pH 值及控制步骤分析[J]. 山东大学学报(工学版), 2005, 35(5): 37-40. HOU Qingwei, SHI Ronggui, LI Yongchen, et al. Analysis on pH value and control step in wet FGD[J]. Journal of Shandong University(Engineering Science), 2005, 35(5): 37-40.
[8] 李双龙,李润平. 火电厂烟囱内壁耐腐蚀金属材料的选择[J]. 热力发电, 2011, 40(7): 28-31. LI Shuanglong, LI Runping. Selection of corrosion-resistant metallic materials for inner wall in chimney for thermal power plan[J]. Thermal Power Generation, 2011, 40(7): 28-31.
[9] 秦明臣,董勇,崔琳,等. 双循环湿法烟气脱硫流动传质模拟[J]. 山东大学学报(工学版), 2015, 45(5): 88-94. QIN Mingchen, DONG Yong, CUI Lin, et al. The simulation of fluid dynamics and mass transfer in a double-loop WFGD[J]. Journal of Shandong University(Engineering Science), 2015, 45(5): 88-94.
[10] 耿萍, 侯庆伟, 路春美. 湿法脱硫喷淋空塔流场数值分析[J]. 山东大学学报(工学版), 2005, 35(5): 24-28. GENG Ping, HOU Qingwei, LU Chunmei. Numerical study on flow field of FGD spray scrubber[J]. Journal of Shandong University(Engineering Science), 2005, 35(5): 24-28.
[11] 潘伶, 杨沛山, 曹友洪. 燃煤电站直排烟囱二次脱水流场模拟与优化[J].煤炭学报, 2013,38(7): 1-5. PAN Ling, YANG Peishan, CAO Youhong. Numerical simulation and optimization of secondary dehydration flow field in direct-discharged chimney[J]. Journal of China Coal Society, 2013, 38(7): 1-5.
[12] 赵喆, 田贺忠, 郝吉明, 等. 颗粒轨道模型用于烟气脱硫喷淋塔两相流数值模拟[J]. 环境科学, 2005, 26(6): 33-38. ZHAO Zhe, TIAN Hezhong, HAO Jiming, et al. Particle trajectory model used in numerical simulation of flue gas desulfurization spray tower[J]. Environmental Science, 2005, 26(6): 33-38.
[13] 李立清,胡蔷,黄贵杰,等. 新型离心式脱硫塔气液两相流数值模拟[J]. 环境工程学报, 2012, 6(9): 3196-3205. LI Liqing, HU Qiang, HUANG Guijie, et al. Numerical simulation of gas-liquid flow state in scrubber of novel centrifugal flue gas desulfurization tower[J]. Chinese Journal of Environmental Engineering, 2012, 6(9): 3196-3205.
[14] 朱莹雪. 烟囱内液滴轨迹分析模拟[D]. 重庆: 重庆大学, 2015. ZHU Yingxue. Simulation and analysis of droplet trajectory in the chimney[D]. Chongqing: Chongqing University, 2015.
[15] 李敏, 周洪光, 顾庆华. 近零排放火电厂烟囱壁面冷凝水液膜分布数值模拟[J]. 热力发电, 2015, 44(11): 68-74. LI Min, ZHOU Hong-guang, GU Qing-hua. Numerical simulation on water film condensed on stack inner wall of near-zero emissions power plant[J]. Thermal Power Generation, 2015, 44(11): 68-74.
[16] 孟令海. 脱硫后烟囱流场压力场以及温度场的数值模拟[D]. 河北:华北电力大学,2010. MENG Linghai. Flow field and pressure field, temperature field simulation of flue gas in the chimney after the desulphurization[D]. Hebei: North China Electric Power University, 2010.
[17] 孙峰利, 卫瑞元. 电厂烟囱压力分布模拟分析[J].苏州大学学报,2011, 31(6): 20-25. SUN Fengli, WEI Ruiyuan. Pressure distribution simulation analysis of chimney of coal-fired power plant[J]. Journal of Suchow University, 2011, 31(6): 20-25.
[18] 牛春良, 李迎, 祁洪生. 一种D形套筒烟囱: 201720076060.0[P]. 2017-01-19. NIU Chunliang, LI Ying, QI Hongsheng. A king of D-shaped sleeve chimney: China, 201720076060.0[P]. 2017-01-19.
[19] 许圣华. 烟气物性的直接计算方法[J]. 苏州丝绸工学院学报, 1999, 19(3): 32-36. XU Shenghua. Direct calculation of flue gas properties[J]. Journal of Suzhou Institute of Silk Textile Technology, 1999, 19(3): 32-36.
[1] Wei HU. Flow resistance characteristics of wire mesh porous media channel based on pore-scale [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 119-126.
[2] SUN Hongyu, ZHANG Zhaoling, DONG Yuping. Influence of pressure on active-air biomass gasification [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(5): 78-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!