JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2014, Vol. 44 ›› Issue (4): 76-83.doi: 10.6040/j.issn.1672-3961.0.2014.006

Previous Articles     Next Articles

The analysis and testing of thermal performance on solar evacuated tube

ZHANG Tao1, HAN Jitian1, YAN Suying2, YU Zeting1, ZHOU Ran1   

  1. 1. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia Municipality, China
  • Received:2014-01-06 Revised:2014-05-08 Published:2014-01-06

Abstract: The joint application test bench for solar-thermal photovoltaic was set up to study solar Kalina cycle. The analysis and testing of thermal performance on solar evacuated tube was carried out with methods of experimental and numerical simulation through the experiment platform of single tube solar water heater. The temperature and velocity field of single tube solar water heater were visible analyzed with field synergy principle. The study showed that the two dimensional numerical calculation model could accurately reflect the trend of all-glass evacuated tube solar water heater in the same conditions and the coefficient of field synergy on evacuated tube which was equipped with guide plate was superior to other structures. It was finally confirmed that the Φ58 mm×1 800 mm of solar evacuated tube equipped with reflector and guide plate was the best choice.

Key words: solar Kalina cycle, the single tube solar water heater, strengthen heat transfer, field synergy principle, experimental study, numerical simulation

CLC Number: 

  • TK515
[1] LOIOS P A, ROGDAKIS E D. A kalina power cycle driven by renewable energy sources[J]. Energy, 2009, 34:457-464.
[2] GANESH N S, SRINIVAS T. Design and modeling of low temperature solar thermal power station[J]. Applied Energy, 2012, 91:180-186.
[3] 路岭,严晋跃,马一太,等. Kalina循环放热过程的热力学分析[J].工程热物理学报,1989,10(3):249-251. LU Ling, YAN Jinyue, MA Yitai, et al. Thermodynamic analysis of heat-releasing process of Kalina cycle[J]. Journal of Engineering Thermophysics, 1989, 10(3):249-251.
[4] 吕灿仁,严晋跃,马一太. Kalina循环的研究和开发及其提高效率的分析[J].热能动力工程,1991,6(1):1-7. LV Canren, YAN Jinyue, MA Yitai. The research and development of kalina cycle and an analysis of its efficiency enhancement potentiality[J]. Journal of Engineering for Thermal Energy and Power, 1991, 6(1):1-7.
[5] MORRISON G L, BUDIHARDJO I, BEHNIA M. Measurement and simulation of flow rate in a water-in-glass evacuated tube solar water heater[J]. Solar Energy, 2005, 78:257-267.
[6] ROSENGARTEN G, MORRISON G L, BEHNIA M. Mixed convection in a narrow rectangular cavity with bottom inlet and outlet[J]. International Journal of Heat and Fluid Flow, 2001, 22:168-179.
[7] BUDIHARDJO I, MORRISON G L, BEHNIA M. Natural circulation flow through water-in-glass evacuated tube solar collectors[J]. Solar Energy, 2007, 81:1460-1472.
[8] BUDIHARDJO I, MORRISON G L. Performance of water-in-glass evacuated tube solar water heaters[J]. Solar Energy, 2009, 83:49-56.
[9] FAN Jianhua, SHAH L J, FURBO S. Flow distribution in a solar collector panel with horizontally inclined absorber strips[J]. Solar Energy, 2007, 81:1501-1511.
[10] SHAH L J, FURBO S. Entrance effects in solar storage tanks[J]. Solar Energy, 2003, 75:337-348.
[11] SHAH L J, ANDERSEN E, FURBO S. Theoretical and experimental investigation of inlet stratifiers for solar storage tanks[J]. Applied Thermal Engineering, 2005, 25:2086-2099.
[12] 何梓年.太阳能热利用[M].合肥:中国科学技术大学出版社,2009:1-583.
[13] 何梓年,朱郭志.太阳能供热采暖应用技术手册[M].北京:化学工业出版社,2009:1-302.
[14] 郑瑞澄.民用建筑太阳能热水系统工程技术手册[M].北京:化学工业出版社,2005:1-326.
[15] 刘鉴民.太阳能热动力发电技术[M].北京:化学工业出版社,2012:1-266.
[16] 王志峰,SUN Hongwei.全玻璃真空管空气集热器管内流动与换热的数值模拟[J].太阳能学报,2001,22(1):35-39. WANG Zhifeng, SUN Hongwei. A numerical simulation on heat transfer and fluid flow in a glass tube of all-glass evacuated tubular solar air heater[J]. Acta Energiae Solaris Sinica, 2001, 22(1):35-39.
[17] 王志峰.全玻璃真空管太阳能空气集热器热性能试验方法研究[J].太阳能学报,2001,22(2):141-147. WANG Zhifeng. Study on measurement of thermal performance of all-glass evacuated tubular solar air heater[J]. Acta Energiae Solaris Sinica, 2001, 22(2):141-147.
[18] 艾宁,樊建华,计建炳. CFD-PIV 流场分析技术应用于太阳热水系统的研究进展[J].化工进展,2007,26(4):513-518. AI Ning, FAN Jianhua, JI Jianbing. Overview of CFD and PIV application in investigation of solar thermal systems[J]. Chemical Industry and Engineering Progress, 2007, 26(4):513-518.
[19] 艾宁,樊建华,李育敏. 全玻璃真空管型太阳热水器内流场的 CFD模拟[J].北京航空航天大学学报,2008,34(10):1195-1199. AI Ning, FAN Jianhua, LI Yumin. CFD study of fluid flow in an all-glass evacuated tube solar water heater[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(10):1195-1199.
[20] 张涛,闫素英,田瑞,等.全玻璃真空管太阳热水器数值模拟研究[J].可再生能源,2011,29(5):10-14. ZHANG Tao, YAN Suying, TIAN Run, et al. The numerical simulation study of all-glass evacuated tube solar water heater[J]. Renewable Energy Resources, 2011, 29(5):10-14.
[21] 张涛,韩吉田,闫素英,等.全玻璃真空管太阳热水器影响因素的数值模拟研究[J].可再生能源,2012,30(10):1-5. ZHANG Tao, HAN Jitian, YAN Suying, et al. The numerical simulation study on influencing factors in all-glass evacuated tube solar water heater[J]. Renewable Energy Resources, 2012, 30(10):1-5.
[22] 王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004:1-23.
[23] 温正,石良辰,任毅如.FLUENT流体计算应用教程[M].北京:清华大学出版社,2009:53-105.
[24] 过增元.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004:1-290.
[25] 李志信,过增元.对流传热优化的场协同理论[M].北京:科学出版社,2010:1-360.
[1] SONG Guijie. Deformation characteristic and instability analysis for shallow soft rock section during tunnel-entering construction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 53-60.
[2] WANG Danhua, ZHANG Guanmin, LENG Xueli, XU Mengna, HAN Yuanyuan. The numerical simulation of two-phase flow distribution characteristics in T-tube [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 89-95.
[3] XIA Mengran, LI Wei, FENG Xiao, ZHU Guangxuan, LI Xia. Grouting reinforcement and excavation stability on super-shallow buried and water-rich sand stratum subway transverse channel [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 47-54.
[4] LYU Guoren, ZHANG Qun, NIU Ben, GAO Quanting, WU Zhaoshou. The effects of pile foundation of high-rise building on adjacent structures [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(1): 48-58.
[5] PENG Yuancheng, DONG Xu, LIANG Na, DENG Zhenquan. Model test of the Beipan River's new open-web continuous rigid frame bridge corner node [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 113-119.
[6] MI Chunrong, LI Jianming. Development and application of after grouting device for prestressed concrete pipe pile [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 89-95.
[7] TANG Weize, OU Jinqiu, CUI Xinzhuang, LOU Junjie, XIAO Ming, ZHANG Jiong, HUANG Dan, HOU Fei. Field test and research on vehicle load induced dynamic pore pressure in asphalt pavement [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 84-90.
[8] QIN Mingchen, DONG Yong, CUI Lin, SUI Hui, LIU Jinglong. The simulation of fluid dynamics and mass transfer in a double-loop WFGD [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(5): 88-94.
[9] CAO Weidong, DAI Tao, YU Jinbiao, XI Kaihua, LU Tongchao, CHENG Aijie. An IMPIMC method for chemical simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(1): 88-94.
[10] GAO Zhijun, CUI Xinzhuang, SUI Wei, GUO Hong, LIU Hang, LI Changyi, FENG Hongbo. Dynamic interaction and damage analysis of large runaway vehicle and tunnel lining [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(5): 49-57.
[11] ZHOU Qian, ZHAO Degang. Application of the horizontal jet grouting pile in water-bearing sandy layer of shallow excavating tunnel [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(4): 52-57.
[12] ZHANG Wenjun, LI Shucai, SU Maoxin*, XUE Yiguo, QIU Daohong. Detection  method of karst caves in city subway based on  the cross-hole resistivity tomography [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(3): 75-82.
[13] LIU Yang, GE Lian-sheng*. TE mode analysis based on a new Padé approximant BPM algrorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(1): 19-23.
[14] WANG Jian-ming, PEI Xin-chao, FAN Xian-hang, LIU Wei, CAO Yan-chao. Numerical simulations of a particle impacting to affect the surface
morphology by SPH coupled FEM
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(5): 87-92.
[15] L Guo-ren1, SUI Bin2, WANG Yong-jin1, WU Jian-quan3. Study on numerical simulation and stability analysis shallow buried tunnel excavation under unsymmetrical  pressure [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(4): 68-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!