您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (1): 17-23.

• 机器学习与数据挖掘 • 上一篇    下一篇

高维数据正定核与不定核的KPCA变换阵比较

崔燕,范丽亚   

  1. 聊城大学数学科学学院, 山东 聊城 252059
  • 收稿日期:2010-04-20 出版日期:2011-02-16 发布日期:2010-04-20
  • 作者简介:崔燕(1985- ), 女, 山东东明人, 硕士研究生, 主要研究方向为模式识别. E-mail:cuiyan899@163.com
  • 基金资助:

    国家自然科学基金资助项目(10871226); 山东省自然科学基金资助项目(ZR2009AL006)

Comparison of KPCA transformation matrices with definite and indefinite kernels for high-dimensional data

CUI Yan, FAN Li-ya   

  1. School of Mathematical Sciences, Liaocheng University, Liaocheng 252059, China
  • Received:2010-04-20 Online:2011-02-16 Published:2010-04-20

摘要:

两步降维的核主成份分析(kernel principal component analysis,KPCA)+线性判别式分析(linear discriminant analysis,LDA)法中,第一步KPCA变换阵的选取影响数据的分类结果。对线性不可分问题首先研究了正定核KPCA+LDA中KPCA变换阵的选取对分类结果的影响;其次,将正定核推广到不定核,研究了不定核KPCA+LDA中KPCA变换阵的选取对分类结果的影响;最后通过实验加以分析和验证。

关键词: 主成份分析, 线性判别式分析, 正定核, 不定核, 降维变换阵

Abstract:

The transformation matrices in the first stage of two-stage dimension reduction KPCA (kernel principal component analysis)+LDA (linear discriminant analysis) influenced the classification results of data. For linear non-separated problems, the influence of the transformation matrices in the first stage of KPCA+LDA to the classification results with definite kernels and then with indefinite kernels was first studied. In addition, experiments were provided for analyzing and illustrating the results.
 

Key words: principal component analysis, linear discriminant analysis, definite kernel, indefinite kernel, dimension reduction transformation matrix

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!