您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (1): 17-23.

• 机器学习与数据挖掘 • 上一篇    下一篇

高维数据正定核与不定核的KPCA变换阵比较

崔燕,范丽亚   

  1. 聊城大学数学科学学院, 山东 聊城 252059
  • 收稿日期:2010-04-20 出版日期:2011-02-16 发布日期:2010-04-20
  • 作者简介:崔燕(1985- ), 女, 山东东明人, 硕士研究生, 主要研究方向为模式识别. E-mail:cuiyan899@163.com
  • 基金资助:

    国家自然科学基金资助项目(10871226); 山东省自然科学基金资助项目(ZR2009AL006)

Comparison of KPCA transformation matrices with definite and indefinite kernels for high-dimensional data

CUI Yan, FAN Li-ya   

  1. School of Mathematical Sciences, Liaocheng University, Liaocheng 252059, China
  • Received:2010-04-20 Online:2011-02-16 Published:2010-04-20

摘要:

两步降维的核主成份分析(kernel principal component analysis,KPCA)+线性判别式分析(linear discriminant analysis,LDA)法中,第一步KPCA变换阵的选取影响数据的分类结果。对线性不可分问题首先研究了正定核KPCA+LDA中KPCA变换阵的选取对分类结果的影响;其次,将正定核推广到不定核,研究了不定核KPCA+LDA中KPCA变换阵的选取对分类结果的影响;最后通过实验加以分析和验证。

关键词: 主成份分析, 线性判别式分析, 正定核, 不定核, 降维变换阵

Abstract:

The transformation matrices in the first stage of two-stage dimension reduction KPCA (kernel principal component analysis)+LDA (linear discriminant analysis) influenced the classification results of data. For linear non-separated problems, the influence of the transformation matrices in the first stage of KPCA+LDA to the classification results with definite kernels and then with indefinite kernels was first studied. In addition, experiments were provided for analyzing and illustrating the results.
 

Key words: principal component analysis, linear discriminant analysis, definite kernel, indefinite kernel, dimension reduction transformation matrix

No related articles found!
Viewed
Full text
107
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 107

  From Others local
  Times 3 104
  Rate 3% 97%

Abstract
898
Just accepted Online first Issue
0 0 898
  From Others
  Times 898
  Rate 100%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!