您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 91-98.doi: 10.6040/j.issn.1672-3961.0.2015.084

• 其他 • 上一篇    下一篇

基于系统动力学的山东省电力需求预测

于松青1,2, 侯承昊2, 孙英涛3   

  1. 1. 天津大学管理与经济学部, 天津 300072;
    2. 国网山东聊城供电公司, 山东聊城 252000;
    3. 国网济南供电公司, 山东济南 250022
  • 收稿日期:2015-03-30 修回日期:2015-04-29 出版日期:2015-12-20 发布日期:2015-03-30
  • 作者简介:于松青(1970-),女,山东聊城人,高级工程师,高级经济师,博士研究生,主要研究方向为系统分析与决策.E-mail:ysq2126@163.com

Power demand forecasting in Shandong province with system dynamics

YU Songqing1,2, HOU Chenghao2, SUN Yingtao3   

  1. 1. College of Management and Economics, Tianjin University, Tianjin 300072, China;
    2. The State Power Supply Company of Liaocheng, Liaocheng 252000, Shandong, China;
    3. State Grid Jinan Power Sapply Company, Jinan 250022, Shandong, China
  • Received:2015-03-30 Revised:2015-04-29 Online:2015-12-20 Published:2015-03-30

摘要: 为增进影响电力需求因素选择的深度和广度,利用系统动力学知识对社会用电需求进行系统分析,并建立了电力需求预测的系统动力学模型,该模型能够反映多方面因素的综合作用。利用历史数据验证了系统动力学模型的准确性,然后利用模型对全社会用电量进行模拟预测,并对节能技术变量和城镇化建设进程变量进行政策分析,给出了相应的政策建议。

关键词: 电力需求预测, 政策分析, 系统动力学

Abstract: To enhance the depth and breadth of choice about the influence factors of power demand, a systematic analysis was made to the society power demand based on system dynamics, and the system dynamics model of power demand forecast were established, which reflects the multiple factors. The accuracy of system dynamics model was verified by historical data, and then was used to simulate and predict the power consumption in Shandong Province. Final, the relevant policy was analyzed for saving technology and urbanization process variable, and some policy suggestion was put forward.

Key words: power demand forecast, system dynamics, policy analysis

中图分类号: 

  • TM715
[1] JAY ZAMIKAU U. Defining total energy use5 in economic studies:does the aggregation approach matter[J]. Energy Economies, 1999(23):485-492.
[2] 陈朝辉.大波动地区电力系统短期负荷预测方法研究[J].华东电力,2002,30(9):53-56. CHEN Zhaohui. A study on shour-term load prediction method for power system[J]. East China Electric Power, 2002, 30(9):53-56.
[3] 杨正瓴,张广涛,林孔元.时间序列法短期负荷预测准确度上限估计[J].电力系统及其自动化学报,2004(02):36-39. YANG Zhengling ZHANG Guangtao, LIN Kongyuan. Upper limit estimating of short term load forecasting precision by time series analysis[J]. Proceedings of the CSU-EPSA, 2004(02):36-39.
[4] MOGHRAM I, RAHMAN S. Analysis and evaluation of five short-term load forecasting techniques[J]. IEEE Transactions, on PWRS, 1989, 4(4):1484-1491.
[5] 李栓,刘莉,刘阳.趋势外推法在电力负荷预测中的应用[J]. 沈阳工程学院学报:自然科学版,2005,1(2-3):64-65. LI Shuan, LIU Li, LIU Yang. Application of trends extrapolation on the power load forecast[J]. Journal of Shenyang Institute of Engineering:Natural Science, 2005, 1(2-3):64-65.
[6] 虞瑄,程浩忠,王旭,等.基于相关分析的中长期电力负荷综合预测方法[J].继电器,2005(15):49-52. YU Xuan, CHENG Haozhong, WANG Xu, et al. A combined power system mid-long term load forecast method based on the correlation analysis[J]. Relay, 2005(15):49-52.
[7] 吴曾,张庆丰.基于稳健回归的电力负荷预测[J].电力科学与工程,2009(04):25-27. WU Zeng, ZHANG Qingfeng. Forecast of power load based on robust regression[J]. Electric Power Science and Engineering, 2009(04):25-27.
[8] 邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社,1992.
[9] 周德强. 改进的灰色Verhulst 模型在中长期负荷预测中的应用[J].电网技术,2009(18):124-127. ZHOU Deqiang. Application of improved gray verhulst model in middle and long term load forecasting[J]. Power System Technology, 2009(18):124-127.
[10] RAHMAN S, SHREATHA G. A priority vector based technique for load forecasting[J]. IEEE Transaction on Power Systems, 1991, 6(4):1459-1465.
[11] WU Hungchih, LU Channan. A data mining approach for spatial modeling in small area load forecast[J]. IEEE Transactions on Power Systems, 2002, 17(2):516-521.
[12] 赵菁,许克明.神经网络和模糊理论在短期负荷预测中的应用[J].电力系统及其自动化学报,2010(03):129-133. ZHAO Jing, XU Keming. Application of neural network and fuzzy theory in short-term load forecasting[J]. Proceedings of the CSU-EPSA, 2010(03):129-133.
[13] AL-HAMADI H M, SOLIMAN S A. Long-term/mid-term electric load forecasting based on short-term correlation and annual growth[J]. Electric Power Systems Research, 2005, 74:353-361.
[14] 师彪,李郁侠,于新花, 等. 基于改进粒子群-模糊神经网络的短期电力负荷预测[J]. 系统工程理论与实践, 2010(1):157-166. SHI Biao, LI Yuxia, YU Xinhua, et al. Short-term load forecasting based on modified particle swarm optimizer and fuzzy neural network model[J]. Systems Engineering-Theory & Practice, 2010(1):157-166.
[15] OWYANG M T. The economic performance of cities:A Markov-switching approach[J]. Journal of Urban Economics, 2008, 64(3):538-550.
[16] GAEL J V, SAATCI Y, TEH Y W, et al. Beam sampling for the infinite hidden markov model[C]//Proceedings of the 25th International Conference on Machine Learning. New York:ACM Press, 2008:1088-1095.
[17] ZENG Jianping, DUAN Jiangjiao, WU Chengrong. A new distance measure for hidden Markov models[J]. Expert Systems with Applications, 2010, 37(2):1550-1555.
[18] 曲亚鑫.基于历史数据的偏最小二乘建模方法研究与应用[D].北京:华北电力大学,2012. QU Yaxin. Research and application of partial least squares modeling methods based on historical data[D]. Beijing:North China Electric Power University, 2012.
[19] 王保义,赵硕,张少敏.基于云计算和极限学习机的分布式电力负荷预测算法[J].电网技术,2014,38(2):526-531. WANG Baoyi, ZHAO Shuo, ZHANG Shaomin. A distributed load forecasting algorithm based on cloud computing and extreme learning machine[J]. Power System Technology, 2014, 38(2):526-531.
[20] 金鑫, 罗滇生, 孙广强, 等. 中长期电力负荷预测模型筛选与组合方法[J]. 电力系统及其自动化学报, 2012, 24(4):150-156. JIN Xin, LUO Diansheng, SUN Guangqiang. Sifting and combination method of medium-and long-term load forecasting model[J]. Proceedings of the CSU-EPSA, 2012, 24(4):150-156.
[21] 王其潘.系统动力学[M].北京:清华大学出版社,1994.
[22] 陈国卫,金家善,耿俊豹,等.系统动力学应用研究综述[J].控制工程,2012,19(6):921-928. CHEN Guowei, JIN Jiashan, GENG Junbao, et al. Application research overview of system dynamics[J]. Control Engineering of China, 2012, 19(6):921-928.
[23] LYNEIS J M. System dynamics formarket forecasting and structural analysis[J]. System Dynamics Review, 2000, 16(1):3-25.
[24] 贺红波,杨洪明,竺琳,等.电力市场发电投资的系统动力学模型[J].电力科学与技术学报,2008,23(1):70-75. HE Hongbo,YANG Hongming, ZHU Lin, et al. System dynamics model for generation investment[J]. Journal of Electric Power Science and Technology, 2008, 23(1):70-75.
[25] SAE-KOK W, YOKOYAMA A, VERMA S C, et al. Excitation control system design of rotary type frequency converter for performance improvement of power system dynamics[J]. IEEE Transactions on Energy Conversion, 2006, 21(1):210-220.
[26] 曾丹,姚建国,杨胜春.柔性负荷与电网互动的系统动力学仿真模型[J].中国电机工程学报,2014,34(25):4227-4233. ZENG Dan, YAO Jianguo, YANG Shengchun. System dynamics simulation model of flexible load in interactive power grid[J]. Proceedings of the CSEE, 2014, 34(25):4227-4233.
[27] 王伟,张粒子,舒隽,等.基于系统动力学的宏观层电网规划的仿真模型[J].中国电机工程学报,2008,28(4):88-93. WANG Wei, ZHANG Lizi, SHU Jun, et al. Simulation model of transmission network macro-planning based on system dynamics[J]. Proceedings of the CSEE, 2008, 28(4):88-93.
[28] 韩冬,严正,宋依群,等.基于系统动力学的智能电网动态评价方法[J].电力系统自动化,2012,36(3):16-21. HAN Dong, YAN Zheng, SONG Yiqun, et al. Dynamic assessment method for smart grid based on system dynamics[J]. Automation of Electric Power Systems, 2012, 36(3):16-21.
[29] 李晨,周黎莎,曾鸣.新能源并网对电力市场影响的系统动力学建模与仿真[J].华东电力,2012,40(10):1675-1679. LI Chen, ZHOU Lisha, ZENG Ming. Modeling and simulation of the impacts of new energy integration on power market based on system dynamics[J]. East China Electric Power, 2012, 40(10):1675-1679.
[30] RAUL Gonzalez de la Fuente, LUIS Javier Miguel. Model of Spanish electrical energy demand[C]//Proceedings of the 9th International Conference of the European Society for Ecological Economics. Istanbul:[s.n.], 2011.
[31] 谈金晶,王蓓蓓,李扬.系统动力学在需求响应综合效益评估中的应用[J].电力系统自动化,2014,38(13):128-134. TAN Jinjing, WANG Beibei, LI Yang. Application of system dynamics on comprehensive benefits valuation of demand response[J]. Automation of Electric Power Systems, 2014, 38(13):128-134.
[32] 廖峰,徐聪颖,姚建刚,等.常德地区负荷特性及其影响因素分析[J].电网技术,2012,36(7):117-125. LIAO Feng, XU Congying, YAO Jiangang, et al. Load characteristics of Changde region and analysis on its influencing factors[J]. Power System Technology, 2012, 36(7):117-125.
[33] 何耀耀, 闻才喜, 许启发,等. 考虑温度因素的中期电力负荷概率密度预测方法[J].电网技术,2015,39(1):176-181. HE Yaoyao, WEN Caixi, XU Qifa, et al. A method to predict probability density of medium-term power load considering temperature factor[J]. Power System Technology, 2015, 39(1):176-181.
[1] 褚晓东,张荣祥,黄昊怡,唐茂森. 全球能源互联网物理-信息系统协同仿真平台[J]. 山东大学学报(工学版), 2016, 46(4): 103-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!