解洪胜, 张虹
XIE Hong-sheng,ZHANG Hong
摘要: 将支持向量机(SVM)应用于基于内容的图像检索领域,提出一种基于Gabor小波变换和支持向量机分类器的新型集成纹理识别方法.目标是利用Gabor小波设计的多通道小波滤波器对图像目标进行小波变换,用Gabor小波变换系数的模的平均值和标准差生成表示目标图像的特征向量,将特征向量归一化后用支持向量机进行训练和识别.最后,利用Brodatz纹理库中的纹理图像进行了试验并与其他几种方法进行了比较.结果表明,该方法的识别率在小样本情况下要优于其他几种方法,并且具有更好的泛化和推广能力.
| [1] | 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16. |
| [2] | 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12. |
| [3] | 刘岩,李幼军,陈萌. 基于EMD和SVM的抑郁症静息态脑电信号分类研究[J]. 山东大学学报(工学版), 2017, 47(3): 21-26. |
| [4] | 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42. |
| [5] | 张玉玲,尹传环. 基于SVM的安卓恶意软件检测[J]. 山东大学学报(工学版), 2017, 47(1): 42-47. |
| [6] | 刘杰, 杨鹏, 吕文生, 刘阿古达木, 刘俊秀. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015, 45(6): 76-83. |
| [7] | 刘晓勇. 一种基于树核函数的半监督关系抽取方法研究[J]. 山东大学学报(工学版), 2015, 45(2): 22-26. |
| [8] | 周哲, 商琳. 一种基于动态词典和三支决策的情感分析方法[J]. 山东大学学报(工学版), 2015, 45(1): 19-23. |
| [9] | 浩庆波, 牟少敏, 尹传环, 昌腾腾, 崔文斌. 一种基于聚类的快速局部支持向量机算法[J]. 山东大学学报(工学版), 2015, 45(1): 13-18. |
| [10] | 李发权, 杨立才, 颜红博. 基于PCA-SVM多生理信息融合的情绪识别方法[J]. 山东大学学报(工学版), 2014, 44(6): 70-76. |
| [11] | 周咏梅1,杨佳能2,阳爱民2. 面向文本情感分析的中文情感词典构建方法[J]. 山东大学学报(工学版), 2013, 43(6): 27-33. |
| [12] | 王昊,华继学,范晓诗. 基于双联支持向量机的入侵检测技术[J]. 山东大学学报(工学版), 2013, 43(6): 53-56. |
| [13] | 施珺,朱敏. 一种基于灰色系统和支持向量机的预测优化模型[J]. 山东大学学报(工学版), 2012, 42(5): 7-11. |
| [14] | 赵加敏,冯爱民*,刘学军. 局部密度嵌入的结构单类支持向量机[J]. 山东大学学报(工学版), 2012, 42(4): 13-18. |
| [15] | 潘冬寅,朱发,徐昇,业宁*. 结肠癌基因表达谱的特征选取研究[J]. 山东大学学报(工学版), 2012, 42(2): 23-29. |
|
||