刘健1,蔡建军2,程森3
LIU Jian1,CAI Jian-jun2,CHENG Sen3
摘要: 神经网络具有自学习、修正误差的能力,遗传算法具有较强的全局随机搜索能力,两者结合可以优势互补. 在编码、选择、交叉、变异等方面对基本遗传算法进行改进,提高其效率和性能,并利用改进的遗传算法对神经网络权阈值进行学习,同时确定最佳的网络结构. 利用原型观测资料建立了大坝变形预测的遗传神经网络模型,模型具有良好的预测性能及泛化功能,为大坝安全监控提供了有力的技术支持.
中图分类号:
| [1] | 沈冬冬,周风余,栗梦媛,王淑倩,郭仁和. 基于集成深度神经网络的室内无线定位[J]. 山东大学学报(工学版), 2018, 48(5): 95-102. |
| [2] | 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报(工学版), 2018, 48(5): 47-54. |
| [3] | 梁蒙蒙,周涛,夏勇,张飞飞,杨健. 基于PSO-ConvK卷积神经网络的肺部肿瘤图像识别[J]. 山东大学学报(工学版), 2018, 48(5): 77-84. |
| [4] | 张宪红,张春蕊. 基于六维前馈神经网络模型的图像增强算法[J]. 山东大学学报(工学版), 2018, 48(4): 10-19. |
| [5] | 赵彦霞, 王熙照. 基于SVD和DCNN的彩色图像多功能零水印算法[J]. 山东大学学报(工学版), 2018, 48(3): 25-33. |
| [6] | 曹雅,邓赵红,王士同. 基于单调约束的径向基函数神经网络模型[J]. 山东大学学报(工学版), 2018, 48(3): 127-133. |
| [7] | 谢志峰,吴佳萍,马利庄. 基于卷积神经网络的中文财经新闻分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 34-39. |
| [8] | 陈嘉杰,王金凤. 基于蚁群算法求解Choquet模糊积分模型[J]. 山东大学学报(工学版), 2018, 48(3): 81-87. |
| [9] | 何正义,曾宪华,郭姜. 一种集成卷积神经网络和深信网的步态识别与模拟方法[J]. 山东大学学报(工学版), 2018, 48(3): 88-95. |
| [10] | 李崴,王者超,李术才,丁万涛,王琦,宗智,刘克奇. 哈尔滨地铁粉质黏土力学性质与超前支护方式[J]. 山东大学学报(工学版), 2018, 48(2): 61-71. |
| [11] | 宋贵杰. 浅埋软岩段隧道进洞施工变形特征与失稳分析[J]. 山东大学学报(工学版), 2018, 48(2): 53-60. |
| [12] | 刘哲,宋锐,邹涛. 基于模型预测控制的磨削机器人末端力跟踪控制算法[J]. 山东大学学报(工学版), 2018, 48(1): 42-49. |
| [13] | 唐乐爽,田国会,黄彬. 一种基于DSmT推理的物品融合识别算法[J]. 山东大学学报(工学版), 2018, 48(1): 50-56. |
| [14] | 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12. |
| [15] | 张国建,于承新,郭广礼. 数字近景摄影测量在监测节制闸动态变形中的应用[J]. 山东大学学报(工学版), 2017, 47(6): 46-51. |
|
||