您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (6): 108-119.doi: 10.6040/j.issn.1672-3961.0.2024.152

• 土木工程 • 上一篇    

深基坑永久支护RECV桩工作机理与计算分析

李连祥1,2,3,车秀熙1,2,李未龙4,邱叶凡1,2,张尚儒1,2,汪楚涵1,2   

  1. 1.山东大学基坑与深基础工程技术研究中心, 山东 济南 250061;2.山东大学土建与水利学院, 山东 济南 250061;3.山东高速岩土工程有限公司, 山东 济南 250102;4.中十冶投资集团有限公司, 陕西 西安 710021
  • 发布日期:2025-12-22
  • 作者简介:李连祥(1966— ),男,河北唐山人,教授,博士生导师,博士,主要研究方向为基坑工程理论与技术. E-mail:jk_doctor@163.com
  • 基金资助:
    国家自然科学基金资助项目(51508310);山东省优秀中青年科学家科研基金资助项目(BS2013SF024);济南市科技计划资助项目(201201145)

Working mechanism and calculation analysis of RECV pile for permanent support of deep foundation pit

LI Lianxiang1,2,3, CHE Xiuxi1,2, LI Weilong4, QIU Yefan1,2, ZHANG Shangru1,2, WANG Chuhan1,2   

  1. LI Lianxiang1, 2, 3, CHE Xiuxi1, 2, LI Weilong4, QIU Yefan1, 2, ZHANG Shangru1, 2, WANG Chuhan1, 2(1. Foundation Pit and Deep Foundation Engineering Research Center, Shandong University, Jinan 250061, Shandong, China;
    2. School of Civil Engineering and Hydraulic Engineering, Shandong University, Jinan 250061, Shandong, China;
    3. Shandong Hi-Speed Geotechnical Engineering Co., Ltd., Jinan 250102, Shandong, China;
    4. CTMG Investment Group Co., Ltd., Xi'an 710021, Shaanxi, China
  • Published:2025-12-22

摘要: 针对现有“临时性”深基坑支护导致资源浪费、环境污染以及传统圆形支护桩墙体平整度难以控制、推广永久支护受阻等问题,本研究提出一种上矩形、中扩体、下圆形变截面(the upper rectangular, middle expanded, lower circular variable section,RECV)桩,作为深基坑永久支护结构。结合朗肯土压力理论和弹性地基梁法,推导RECV桩全桩身的弯矩、剪力、应力计算公式;采用有限元方法建立数值模型,并基于工程监测数据验证模型的可靠性后,模拟对比了RECV桩与传统圆形桩作为基坑支护桩时的水平位移和桩身弯矩特性。数值模拟结果表明:在锚杆支护条件下,RECV桩的最大水平位移较圆形桩小18.2%,单位体积混凝土支护能力提高14.8%,表现出更强的抗变形能力和单位体积混凝土支护效率优势。理论计算结果与模拟结果走势基本一致。本研究可为RECV桩的内力计算提供参考,为RECV桩的技术理论和设计方法奠定基础,推动永久支护技术的发展。

关键词: 基坑支护, 异形桩, 永久支护, 有限元, 弹性地基梁

Abstract: Aiming at the problems of resource waste, environmental pollution caused by the ‘temporary’ nature of existing deep foundation pit support, the difficulty in controlling the flatness of the traditional circular support pile wall, and the obstruction of promoting permanent support, this study proposed an upper rectangular, medium-expanded, and lower circular variable section(RECV)pile as a permanent support structure for deep foundation pits. This study combined Rankine's earth pressure theory and elastic foundation beam method to derive the calculation formulas of bending moment, shear force and stress of the whole pile of RECV pile. The finite element method was used to establish the numerical model, and the reliability of the model was verified based on the engineering monitoring data. The horizontal displacement and bending moment characteristics of RECV pile and traditional circular pile as foundation pit supporting pile were simulated and compared. The numerical simulation results showed that under the condition of bolt support, the horizontal displacement of RECV pile was significantly smaller than that of traditional circular pile, which showed stronger anti-deformation ability and unit volume concrete support efficiency advantage. The theoretical calculation results were basically consistent with the simulation results, which could provide reference for the internal force calculation of RECV piles, lay a foundation for the technical theory and design method of RECV piles, and promote the development of permanent support technology.

Key words: foundation pit support, special-shaped pile, permanent support, finite element, elastic foundation beam

中图分类号: 

  • TU94
[1] 中国建筑科学研究院. 建筑基坑支护技术规程:JGJ120—2012[S]. 北京:中国建筑工业出版社, 2010.
[2] 左人宇. “一桩三用”技术与实践[D]. 杭州: 浙江大学, 2001:3-4. ZUO Renyu. The “One-Pile Three-Use”technology and practice[D]. Hangzhou: Zhejiang University, 2001: 3-4.
[3] 王卫东, 沈健. 基坑围护排桩与地下室外墙相结合的“桩墙合一”的设计与分析[J]. 岩土工程学报, 2012, 34(增刊1): 303-308. WANG Weidong, SHEN Jian. Design and analysis of the “Combined Pile-Wall” method integrating diaphragm piles with basement outer walls[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(Suppl.1): 303-308.
[4] 王卫东, 王建华. 深基坑工程中主体工程地下结构与支护结构相结合的研究与实践[J]. 工业建筑, 2004, 3(增刊2):11. WANG Weidong, WANG Jianhua. Research and practice on the combined use of main project underground structure and support structure in deep foundation pit engineering[J]. Industrial Construction, 2004, 3(Suppl.2): 11.
[5] 李连祥, 刘兵, 李先军. 支护桩与地下主体结构相结合的永久支护结构[J]. 建筑科学与工程学报, 2017, 34(2): 119-126. LI Lianxiang, LIU Bing, LI Xianjun. Permanent support structure integrating retaining piles with underground main structure[J]. Journal of Building Science and Engineering, 2017, 34(2): 119-126.
[6] 李连祥, 李胜群, 邢宏侠, 等. 深基坑岩土结构化永久支护理论与设计方法[J]. 建筑结构, 2024, 54(13):133-140. LI Lianxiang, LI Shengqun, XING Hongxia, et al. Theory and design methods of rock-soil structured permanent support for deep foundation pits[J]. Building Structure, 2024, 54(13): 133-140.
[7] 李连祥, 刘兵, 成晓阳. 基坑支护桩永久存在对地下室外墙土压力分布的影响[J]. 山东大学学报(工学版), 2018, 48(2):30-38. LI Lianxiang, LIU Bing, CHENG Xiaoyang. Effect of permanent retaining piles on soil pressure distribution on basement exterior walls in foundation pits[J]. Journal of Shandong University(Engineering Science), 2018, 48(2): 30-38.
[8] 李连祥. 积极推进基坑工程变革-兼谈支护结构永久化与可回收[EB/OL].(2018-09-21)[2024-07-02]. https://news.yantuchina.com/39312.html
[9] 李连祥. 土岩双元深基坑工程[M]. 北京:中国建筑工业出版社, 2022: 5-6.
[10] FANTAYE S Y, JOHNSON S, VERASTEGUI R. Nothing temporary here: gain efficiency by integrating excavation support as permanent foundation[C] //Engineers AEI 2015. Milwaukee, USA: [s.n.] , 2015: 141-150.
[11] 李连祥. 地下结构群深基坑工程[M]. 北京:中国建筑工业出版社, 2023: 66-67.
[12] 山东大学,山东高新岩土科技有限公司. 一种钢筋混凝土钻孔灌注桩的钻具: 202311238194.4[P]. 2023-12-29.
[13] 山东高新岩土科技有限公司,山东大学.一种基坑永久支护桩墙及其施工方法: 202311238131.9[P]. 2023-12-01.
[14] 刘汉龙, 张建伟, 彭劼. PCC桩水平承载特性足尺模型试验研究[J]. 岩土工程学报, 2009, 31(2): 161-165. LIU Hanlong, ZHANG Jianwei, PENG Jie. Full-scale model test study on horizontal bearing characteristics of PCC piles[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 161-165.
[15] 王俊林, 王复明, 任连伟, 等. 大直径扩底桩单桩水平静载试验与数值模拟[J].岩土工程学报, 2010, 32(9): 1406-1411. WANG Junlin,WANG Fuming, REN Lianwei, et al. Horizontal static load test and numerical simulation of large-diameter bellied piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1406-1411.
[16] 王建华, 陈锦剑, 柯学. 水平荷载下大直径嵌岩桩的承载力特性研究[J]. 岩土工程学报, 2007(8): 1194-1198. WANG Jianhua, CHEN Jinjian, KE Xue. Study on bearing capacity characteristics of large-diameter rock-socketed piles under horizontal loads[J]. Chinese Journal of Geotechnical Engineering, 2007(8): 1194-1198.
[17] 徐长节, 朱怀龙, 龙莉波, 等. 深基坑隔离桩对坑外既有隧道保护效果分析[J]. 隧道与地下工程灾害防治, 2019, 1(1): 119-126. XU Changjie, ZHU Huailong, LONG Libo, et al. Analysis of the protective effect of isolation piles on existing tunnels outside deep foundation pits[J]. Disaster Prevention of Tunnels and Underground Engineering, 2019, 1(1): 119-126.
[18] 杨光华. 深基坑支护结构的实用计算方法及其应用[J]. 岩土力学, 2004(12): 1885-1896. YANG Guanghua. Practical calculation methods and applications for deep foundation pit support structures[J]. Rock and Soil Mechanics, 2004(12): 1885-1896.
[19] 上海市基础工程集团有限公司. 全液压旋挖扩底灌注桩(AM工法)技术规程:T/CECS 1291—2023[S]. 北京: 中国建筑工业出版社, 2023.
[20] 王卫东, 邸国恩. TRD工法等厚度水泥土搅拌墙技术与工程实践[J]. 岩土工程学报, 2012, 34(增刊1): 628-633. WANG Weidong, DI Guoen. TRD method: thickened cement soil mixing wall technology and engineering practice[J]. Chinese Journal of Geotechnical Engi-neering, 2012, 34(Suppl.1): 628-633.
[21] 浙江省住房和城乡建设厅. 渠式切割水泥土连续墙技术规程: JGJ/T303—2013[S]. 北京: 中国建筑工业出版社, 2013.
[22] 郭印, 赵刚, 孙元帝, 等. 桩锚式支护桩内力和变形测试研究[J]. 地下空间与工程学报, 2009, 5(5):1020-1024. GUO Yin, ZHAO Gang, SUN Yuandi, et al. Experimental study on internal forces and deformation of anchored retaining piles[J]. Journal of Underground Space and Engineering, 2009, 5(5): 1020-1024.
[23] 朱彦鹏, 王秀丽, 于劲, 等. 悬臂式支护桩内力的试验研究[J]. 岩土工程学报, 1999(2): 101-104. ZHU Yanpeng, WANG Xiuli, YU Jin, et al. Experimental research on internal forces of cantilever retaining piles[J]. Chinese Journal of Geotechnical Engineering, 1999(2): 101-104.
[24] 中国建筑科学研究院. 建筑桩基技术规范: JGJ 94—2008[S]. 北京:中国建筑工业出版社, 2008.
[25] 中国建筑科学研究院. 混凝土结构设计规范: GB 50010—2010[S].北京:中国建筑工业出版社, 2010.
[1] 李旭,杨斌,刘昌斌,牛军川. 全柔性隔振系统的有限元功率流可视化研究[J]. 山东大学学报 (工学版), 2024, 54(6): 176-181.
[2] 罗靓,晏宇翔,吕辉,张成明. 异形钢管混凝土轴压短柱力学性能[J]. 山东大学学报 (工学版), 2024, 54(3): 103-114.
[3] 樊禹江,丁佳雄,黄欢欢,廖凯,许锦宝. 一种新型装配式混凝土剪力墙等效平面桁架模型[J]. 山东大学学报 (工学版), 2024, 54(3): 94-102.
[4] 扈萍,李萌,滕越,马少坤, 张西文. 考虑主应力偏转影响的基坑开挖应力路径[J]. 山东大学学报 (工学版), 2023, 53(6): 100-107.
[5] 李连祥,李红波,韩刚,郭龙德,赵仕磊. 济南非饱和土基坑支护设计[J]. 山东大学学报 (工学版), 2023, 53(3): 41-49.
[6] 王旭昊,刘倩倩,李虎成,李程,李鹏,凌一峰. 装配式水泥混凝土路面板空心形式研究与优化[J]. 山东大学学报 (工学版), 2022, 52(4): 139-150.
[7] 耿麒,张俊杰,汪珂,路宇峰,谢立扬,叶敏. 基于FEM-SPH耦合的TBM滚刀切削仿真与试验研究[J]. 山东大学学报 (工学版), 2022, 52(1): 93-102.
[8] 张福海,周玉石,刘学港,秦承帅,孙子正,张一鸣. 基于斜桩支护的框架结构基坑变形分析[J]. 山东大学学报 (工学版), 2022, 52(1): 58-65.
[9] 宋修广, 杨鹤, 陈晓燕, 崔文杰, 岳红亚, 张恺, 田隽. 砂土中浅埋竖向锚定板极限承载力[J]. 山东大学学报 (工学版), 2021, 51(1): 24-31.
[10] 韩家桢,王勇,谢玉东,王启先,张新标,高文彬,李荣兰,张传军. 深海带电插拔连接器力学特性分析[J]. 山东大学学报 (工学版), 2020, 50(6): 30-39.
[11] 林超,张程林,王勇. 预应力中空棒构件设计与力学特性[J]. 山东大学学报 (工学版), 2020, 50(5): 26-32.
[12] 董旭,郭剑,周海灿,邓振全,李树忱. 轨道交通U形梁底板横向抗裂及预应力布置研究[J]. 山东大学学报 (工学版), 2019, 49(4): 44-50.
[13] 王晓光,何壮,李显富,潘奥. 磁悬浮旋翼驱动磁场对支承磁场的影响[J]. 山东大学学报 (工学版), 2019, 49(4): 86-92.
[14] 王龙林,胡训栋,祁金胜,安春国,王湛. 多载荷作用下内压对烟风道安全性的影响[J]. 山东大学学报 (工学版), 2018, 48(6): 116-121.
[15] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!