您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (5): 130-139.doi: 10.6040/j.issn.1672-3961.0.2024.227

• 土木工程 • 上一篇    

盐溶液干湿循环作用下钢渣细骨料混凝土的耐久性

薛刚,邱永康*,秦政博,董伟   

  1. 内蒙古科技大学土木工程学院, 内蒙古 包头014010
  • 发布日期:2025-10-17
  • 作者简介:薛刚(1968— ),男,内蒙古包头人,教授,硕士生导师,博士,主要研究方向为新型建筑材料. E-mail: xuegang-2008@126.com. *通信作者简介:邱永康(2000— ),男,福建光泽人,硕士研究生,主要研究方向为新型建筑材料. E-mail:17346204687@163.com
  • 基金资助:
    国家自然科学基金资助项目(52168032);2023年度内蒙古自治区直属高校基本科研业务费资助项目(2023RCTD025)

Durability of steel slag fine aggregate concrete under the action of salt solution wet and dry circulation

XUE Gang, QIU Yongkang*, QIN Zhengbo, DONG Wei   

  1. XUE Gang, QIU Yongkang*, QIN Zhengbo, DONG Wei(College of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
  • Published:2025-10-17

摘要: 为研究盐溶液干湿循环作用下钢渣细骨料混凝土(steel slag fine aggregate concrete, SSC)的耐久性,通过力学性能试验确定钢渣和粉煤灰在混凝土中的最佳体积分数,并对混凝土试样进行盐溶液干湿耐久性试验,综合考虑钢渣、粉煤灰体积分数对混凝土的外观、质量、动弹性模量及抗压强度的影响。结果表明:钢渣体积分数为30%时,SSC的抗压强度、抗折强度、动弹性模量均优于普通混凝土;继续掺入10%体积分数的粉煤灰后,SSC各项力学性能指标进一步提高;100次盐溶液干湿循环后,钢渣体积分数为30%的SSC质量损失率、抗压强度损失率、动弹性模量损失率均小于普通混凝土,继续掺入10%体积分数的粉煤灰可延缓SSC耐久性能劣化,且SSC在单盐溶液干湿循环作用的耐久性好于复盐溶液;以动弹性模量损伤为指标建立了损伤演化方程,可较好地描述盐溶液干湿循环作用下SSC性能的劣化过程。

关键词: 钢渣细骨料混凝土, 盐蚀, 干湿循环, 耐久性, 损伤演化

Abstract: In order to study the durability of steel slag fine aggregate concrete(SSC)under the action of dry-wet cycle of salt solution, the optimal volume fraction of steel slag and fly ash in concrete was determined by mechanical property tests, and the dry and wet durability test of salt solution was carried out on concrete samples. The effects of the volume fraction of steel slag and fly ash on the appearance, quality, dynamic elastic modulus, and compressive strength of concrete were considered comprehensively. The results showed that when the volume fraction of steel slag was 30%, the compressive strength, flexural strength, and dynamic elastic modulus of SSC were better than those of ordinary concrete. The mechanical properties of SSC were further improved after 10% volume fraction of fly ash was added. After 100 dry-wet cycles of salt solution, the mass loss rate, compressive strength loss rate, and dynamic elastic modulus loss rate of steel slag with 30% volume fraction were smaller than those of ordinary concrete. The addition of 10% volume fraction fly ash could delay the deterioration of SSC durability, and the durability of SSC in dry and wet cycling of single salt solution was better than that of double salt solution. The damage evolution equation was established with the dynamic elastic modulus damage as the index, which could describe the deterioration of SSC properties under the dry-wet cycle of salt solution.

Key words: steel slag fine aggregate concrete, salt corrosion, dry-wet cycle, durability, damage evolution

中图分类号: 

  • TU528.51
[1] 赵令, 程峥明, 郑伟成, 等. 改性钢渣/橡胶复合材料导热性能及耐久性研究[J]. 工程科学学报, 2023, 45(5):765-773. ZHAO Ling, CHENG Zhengming, ZHENG Weicheng, et al. Studies on thermal conductivity and durability of modified steel slag/rubber composites[J]. Chinese Journal of Engineering, 2023, 45(5): 765-773.
[2] 张浩, 韩伟胜, 程峥明, 等. 基于SEM与FTIR研究改性钢渣/橡胶复合材料的热氧老化机理[J]. 光谱学与光谱分析, 2022, 42(12):3906-3912. ZHANG Hao, HAN Weisheng, CHENG Zhengming, et al. Thermal oxidative aging mechanism of modified steel slag/rubber composites based on SEM and FTIR[J]. Spectroscopy and Spectral Analysis, 2022, 42(12): 3906-3912.
[3] 吴跃东, 彭犇, 吴龙, 等. 国内外钢渣处理与资源化利用技术发展现状综述[J]. 环境工程, 2021, 39(1): 161-165. WU Yuedong, PENG Ben, WU Long, et al. Review on global development of treatment and utilization of steel slag[J]. Environmental Engineering, 2021, 39(1): 161-165.
[4] 冯忠居, 陈慧芸, 王富春, 等. 强盐沼泽区干湿循环作用下桥梁桩基腐蚀损伤[J]. 交通运输工程学报, 2023, 23(6): 156-167. FENG Zhongju, CHEN Huiyun, WANG Fuchun, et al. Corrosion damage of bridge pile foundations under dry-wet cycles in strong salt marsh areas[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 156-167.
[5] 王伯昕, 黄智鑫, 毕广泽. 干湿循环作用下吉林省西部土壤盐离子对混凝土的侵蚀破坏机理[J]. 吉林大学学报(地球科学版), 2024, 54(2): 558-569. WANG Boxin, HUANG Zhixin, BI Guangze. Mechanism of ion erosion on concrete under action of dry-wet cycles[J]. Journal of Jilin University(Earth Science Edition), 2024, 54(2): 558-569.
[6] 路承功, 魏智强, 乔宏霞, 等. 盐渍土地区混凝土加速寿命试验可靠性分析方法[J]. 中南大学学报(自然科学版), 2021, 52(3): 1017-1026. LU Chenggong, WEI Zhiqiang, QIAO Hongxia, et al. Reliability analysis method of accelerated life test of concrete in saline soil area[J]. Journal of Central South University(Science and Technology), 2021, 52(3): 1017-1026.
[7] ZHU P C, LIANG N H, LIU X R, et al. Investigation of the mechanical and durability properties of concrete containing modified fly ash and modified zeolite powder: an effective transport model for sulfate ions in concrete[J]. Journal of Building Engineering, 2024, 95: 110068.
[8] ZHOU Q S, LU C F, WANG W, et al. Effect of fly ash and sustained uniaxial compressive loading on chloride diffusion in concrete[J]. Journal of Building Engineering, 2020, 31: 101394.
[9] CHENG X, TIAN W, GAO J F, et al. Performance evaluation and lifetime prediction of steel slag coarse aggregate concrete under sulfate attack[J]. Construction and Building Materials, 2022, 344: 128203.
[10] 吕国儿, 尚进, 黄珊珊, 等. 硫酸盐和氯盐对砂浆宏微观力学性能的影响[J].水资源与水工程学报, 2024, 35(2): 159-166. LÜ Guoer, SHANG Jin, HUANG Shanshan,et al. Macro-and micro-mechanical properties of mortar under sulfate and cloride attack[J]. Journal of Water Resources and Water Engineering, 2024, 35(2): 159-166.
[11] DEHESTANI A, HOSSEINI M, TALEB BEYDOKHTI A. Effect of wetting-drying cycles on mode I and mode II fracture toughness of cement mortar and concrete[J]. Theoretical and Applied Fracture Mechanics, 2020, 106: 102448.
[12] 赵喜云, 吴建华. 氯盐干湿循环作用下混凝土力学性能与孔结构变化研究[J].水利水电技术, 2020, 51(4): 220-226. ZHAO Xiyun, WU Jianhua. Study on concretemechanical performance and pore structure change under effect of chlorine salt dry-wet cycle[J].Water Resources and Hydropower Engineering, 2020, 51(4): 220-226.
[13] WANG K, GUO J J, LIU X J, et al. Effect of dry-wet ratio on pore-structure characteristics of fly ash concrete under sulfate attack[J]. Materials and Structures, 2021, 54(3): 100.
[14] 董瑞鑫, 申向东, 薛慧君, 等. 干湿循环作用下风积沙混凝土的抗硫酸盐侵蚀机理[J]. 材料导报, 2020, 34(24):24040-24044. DONG Ruixin, SHEN Xiangdong, XUE Huijun, et al. Sulfate resistance mechanism of aeolian sand concrete under dry-wet cycles[J]. Materials Reports, 2020, 34(24): 24040-24044.
[15] 董瑞鑫, 申向东, 薛慧君, 等. 干湿循环作用下风积沙混凝土的抗硫酸盐耐久性[J]. 材料导报, 2020, 34(20): 20053-20060. DONG Ruixin, SHEN Xiangdong, XUE Huijun, et al. Sulfate durability of aeolian sand concrete under dry-wet cycles and sand blowing[J]. Materials Reports, 2020, 34(20): 20053-20060.
[16] 张江涛, 郭鑫, 张洪滔, 等. 不同地域和工艺制备钢渣的矿物组成与胶凝活性研究[J]. 混凝土, 2024(5): 93-97. ZHANG Jiangtao, GUO Xin, ZHANG Hongtao, et al. Mineral composition and cementitious activity of steel slag prepared by different processes in different regions[J]. Concrete, 2024(5): 93-97.
[17] 国家市场监督管理总局, 国家标准化管理委员会. 建设用砂: GB/T 14684—2022[S]. 北京: 中国标准出版社, 2022.
[18] 国家质量技术监督局. 水泥压蒸安定性试验方法: GB/T 750—1992[S]. 北京: 中国标准出版社, 1993.
[19] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011.
[20] SAHA A K. Effect of class F fly ash on the durability properties of concrete[J]. Sustainable Environment Research, 2018, 28(1): 25-31.
[21] YU X T, CHEN D, FENG J R, et al. Behavior of mortar exposed to different exposure conditions of sulfate attack[J]. Ocean Engineering, 2018, 157: 1-12.
[22] 郭丽萍, 张健, 曹园章, 等. 超高性能水泥基材料复合盐侵蚀研究:合成Friedel盐和钙矾石在硫酸盐和氯盐溶液中的稳定性[J]. 材料导报, 2017, 31(23): 132-137. GUO Liping, ZHANG Jian, CAO Yuanzhang, et al. A study for compound salts attack on ultra-high performance cement-based materials: the stabilities of chemically synthesized friedel salt and ettringite in solutions of sulfates and chloride salts[J]. Materials Review, 2017, 31(23): 132-137.
[23] 王成, 田青, 张苗, 等. 干湿循环对混凝土性能的影响研究综述[J]. 材料导报, 2023, 37(增刊2): 208-217. WANG Cheng, TIAN Qing, ZHANG Miao, et al. Influence of wetting-drying cycle on concrete properties: a review[J].Materials Review, 2023, 37(Suppl.2): 208-217.
[24] LAI M H, ZOU J J, YAO B Y, et al. Improving mechanical behavior and microstructure of concrete by using BOF steel slag aggregate[J]. Construction and Building Materials, 2021, 277: 122269.
[25] SUN X S, LI Y J, WEI X L, et al. High contents of steel slag in the road concrete: hydration mechanism,mechanical property and durability performance[J]. Construction and Building Materials, 2023, 400: 132703.
[26] 韩长君, 周海龙, 陈岩, 等. 粉煤灰对高强混凝土力学性能及孔隙结构影响[J].排灌机械工程学报, 2024, 42(4): 410-417. HAN Changjun, ZHOU Hailong, CHEN Yan, et al. Effect of fly ash on mechanical properties and pore structure of high-strength concrete[J]. Journal of Drainage and Irrigation Machinery Engineering, 2024, 42(4): 410-417.
[27] 翟思敏, 黄金霞. 建筑用不同取代率粉煤灰再生混凝土的力学性能及耐久性能研究[J]. 功能材料, 2024, 55(4): 4121-4126. ZHAI Simin, HUANG Jinxia. Study on the mechanical properties and durability of recycled fly ash concrete with different substitution rates for construction[J]. Journal of Functional Materials, 2024, 55(4): 4121-4126.
[28] FANG Y, YAO Z S, LI X W, et al. Durability of reactive powder concrete of drilling shaft and triaxial compression damage constitutive model under composite salt erosion[J].Journal of Building Engineering, 2022, 62: 105395.
[29] LØLAND K E.Continuous damage model for load-response estimation of concrete[J].Cement and Concrete Research, 1980, 10(3): 395-402.
[1] 银英姿,魏景涛,泽里罗布,董伟. 基于Wiener退化过程的纤维混凝土抗冻性[J]. 山东大学学报 (工学版), 2025, 55(2): 106-113.
[2] 董伟,朱相茹,王雪松,周梦虎. 氯盐干湿循环下风积沙混凝土微观结构演变[J]. 山东大学学报 (工学版), 2024, 54(4): 115-121.
[3] 肖文斌,谢印标,郑扬,武科,陈榕,李秋雷,程睿哲. 活动断层下城市地铁隧道变形破坏与损伤[J]. 山东大学学报 (工学版), 2023, 53(3): 1-13.
[4] 刘澔. 钢渣粉基沥青混合料的性能评价与提升机理[J]. 山东大学学报 (工学版), 2023, 53(1): 32-38.
[5] 冯啸1,张乐文1*,刘人太1,张崇高2,孙子正1,张伟杰1. 碱土加固注浆材料试验及其工程应用[J]. 山东大学学报(工学版), 2013, 43(6): 65-71.
[6] 王甲春1,张照华2,苏宁3. 混凝土渗透性的原位测试与评价[J]. 山东大学学报(工学版), 2013, 43(5): 74-79.
[7] 谭忠盛,黄成造 ,刘恒,朋改非 . 大跨公路隧道结构耐久性分析[J]. 山东大学学报(工学版), 2008, 38(3): 18-22 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!