您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (5): 120-129.doi: 10.6040/j.issn.1672-3961.0.2024.135

• 土木工程 • 上一篇    

基坑全回收HLC组合钢桩工作机理

李连祥1,2,3,邱叶凡1,2*,韩一鸣1,2,张菊连4,李庆中5,车秀熙1,2   

  1. 1.山东大学基坑与深基础工程技术研究中心, 山东 济南 250061;2.山东大学土建与水利学院, 山东 济南 250061;3.山东高速岩土工程有限公司, 山东 济南 250102;4.上海宏信设备工程有限公司, 上海 201806;5.瑞马丸建(安徽)工程支护科技有限公司, 安徽 马鞍山 243003
  • 发布日期:2025-10-17
  • 作者简介:李连祥(1966— ),男,河北唐山人,教授,博士生导师,博士,主要研究方向为基坑工程理论与技术. E-mail:jk_doctor@163.com. *通信作者简介:邱叶凡(2000— ),女,山东潍坊人,硕士研究生,主要研究方向为基坑全回收围护结构. E-mail:2430276544@qq.com
  • 基金资助:
    国家自然科学基金资助项目(51508310);山东省优秀中青年科学家科研基金资助项目(BS2013SF024);济南市科技计划资助项目(201201145)

The working mechanism of HLC composite steel pile with full recovery in foundation pit

LI Lianxiang1,2,3, QIU Yefan1,2*, HAN Yiming1,2, ZHANG Julian4, LI Qingzhong5, CHE Xiuxi1,2   

  1. LI Lianxiang1, 2, 3, QIU Yefan1, 2*, HAN Yiming1, 2, ZHANG Julian4, LI Qingzhong5, CHE Xiuxi1, 2(1. Shandong University Foundation Pit and Deep Foundation Engineering Technology Research Center, Jinan 250061, Shandong, China;
    2. College of Civil Engineering and Water Conservancy, Shandong University, Jinan 250061, Shandong, China;
    3.Shandong Hi-Speed Geotechnical Engineering Co., Ltd., Jinan 250102, Shandong, China;
    4. Shanghai Hongxin Equipment Engineering Co., Ltd., Shanghai 201806, China;
    5. Ruima Wanjian(Anhui)Construction Protecting Technology Co., Ltd., Maanshan 243003, Anhui, China
  • Published:2025-10-17

摘要: 为优化H型钢-拉森钢板桩连接(H-pile and Larsen sheet pile connected,HLC)组合钢桩在基坑支护中的应用,解决现有设计中H型钢和钢板桩土压力分担不明确的问题,本研究采用理论分析、现场实测和数值模拟相结合的方法,推导了HLC组合钢桩在理想状态和实际状态下惯性矩的计算公式,提出截面刚度折减系数与协同系数的计算方法,分析HLC钢桩刚度折减系数沿深度的变化规律,从而表征整体结构的工作性能。结果表明,各个支护桩的土压力分担比不符合理论刚度分配规律,单独钢板桩的土压力分担比可达10%,实际支护刚度应考虑各支护单元间的相互作用。该研究可为悬臂式HLC基坑支护结构设计提供理论参考。

关键词: HLC钢桩, 钢板桩, 截面应力, 刚度折减, 协同系数

Abstract: To optimize the application of HLC composite steel piles in foundation pit support and solve the problem of unclear soil pressure sharing between H-shaped steel and steel sheet piles in the existing design, this study adopted a combined method of theoretical analysis, on-site measurement, and numerical simulation. The calculation formulas for the moment of inertia of HLC composite steel piles in ideal and actual states were derived. The calculation methods for the section stiffness reduction coefficient and the synergy coefficient were proposed. The variation law of the stiffness reduction coefficient of HLC composite steel piles along the depth was analyzed to characterize the working performance of the overall structure. The results showed that the earth pressure sharing ratio of each supporting pile did not conform to the theoretical stiffness distribution law, with that of a single steel sheet pile reaching up to 10%. The actual supporting stiffness should take into account the interaction between the supporting units. This study could provide a theoretical reference for the design of cantilever HLC foundation pit support structures.

Key words: HLC steel pile, steel sheet pile, section stress, stiffness reduction, cooperativity coefficient

中图分类号: 

  • TU392.1
[1] 中国工程建设标准化协会. 全回收基坑支护技术规程: T/CECS 1208—2022[S]. 北京: 中国建筑工业出版社, 2022.
[2] 李连祥. 土岩双元深基坑工程[M]. 北京: 中国建筑工业出版社, 2022: 1-5.
[3] 李连祥. 地下结构群深基坑工程[M]. 北京: 中国建筑工业出版社, 2023: 1-13.
[4] 中华人民共和国住房和城乡建设部. 建筑基坑支护技术规程: JGJ 120—2012[S]. 北京: 中国建筑工业出版社, 2012.
[5] SCHMIEG H, VIELSACK P. Transmission of shear forces in sheet pile interlocks[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(4): 292-297.
[6] 麦桂林. U型钢板桩墙抗弯刚度试验研究与数值分析[D]. 广州:华南理工大学, 2019. MAI Guilin. Experimental study and numerical analysis of flexural stiffness of U-shaped steel sheet pile wall[D]. Guangzhou: South China University of Technology, 2019.
[7] 中国工程建设标准化协会. 钢板桩支护技术规程: T/CECS 720—2020[S]. 北京: 中国建筑工业出版社, 2020.
[8] 刘震宇. U型钢板桩锁扣抗弯刚度折减效应研究[J]. 中国水运(下半月), 2016, 16(3): 304-306. LIU Zhenyu. Study on the reduction effect of bending stiffness of U-shaped steel sheet pile locking[J].China Water Transportation(Second Half Month), 2016, 16(3): 304-306.
[9] 张帅. U型钢板桩墙桩间锁扣摩擦力及其抗弯刚度研究[D]. 广州:华南理工大学, 2017. ZHANG Shuai. Study on the friction force and bending stiffness of U-shaped steel sheet pile wall[D]. Guangzhou:South China University of Technology, 2017.
[10] 罗永真. 基于桩间锁扣摩擦分析的钢板桩刚度特性研究[D]. 广州:华南理工大学, 2015. LUO Yongzhen. Study on stiffness characteristics of steel sheet pile based on friction analysis of locking buckle between piles[D]. Guangzhou:South China University of Technology, 2015.
[11] 陈彬. 基于有限元分析的钢板桩间锁扣摩擦对其抗弯特性的影响研究[D]. 广州:华南理工大学, 2013. CHEN Bin. Research on the influence of locking friction between steel sheet piles on its bending characteristics based on finite element analysis [D]. Guangzhou: South China University of Technology, 2013.
[12] KORT D A. Interlock friction in steel sheet piling[J]. Materials Science, Engineering, 2006: 845-851.
[13] TOMINAGA T, NAKANO H, TESHIMA K. Study for structural performance of hat-type sheet pile for retaining wall[J]. Geotechnics for Sustainable Infrastructure Development, 2020, 62: 459-466.
[14] 杨靓. 组合钢板桩(HSW工法)支护结构设计及其工程应用[D]. 南京:东南大学, 2017. YANG Liang. Supporting structure design and engineering application of composite steel sheet pile(HSW method)[D]. Nanjing: Southeast Univer-sity, 2017.
[15] 张洁. 组合钢板桩(HSW工法)支护结构设计工程应用[J]. 四川水泥, 2020(2): 88. ZHANG Jie. Engineering application of composite steel sheet pile(HSW method)supporting structure design [J]. Sichuan Cement, 2020(2): 88.
[16] 赵志孟, 郑伟锋. HUC组合钢板桩的受力性能分析[J].施工技术, 2017, 46(增刊2): 270-274. ZHAO Zhimeng, ZHENG Weifeng. Mechanical perfor-mance analysis of HUC composite steel sheet pile[J]. Construction Technology, 2017, 46(Suppl.2): 270-274.
[17] 赵志孟. HUC组合钢板桩的受力性能分析及施工措施控制[D]. 广州:广州大学, 2017. ZHAO Zhimeng. Mechanical performance analysis and construction measures control of HUC composite steel sheet pile[D]. Guangzhou: Guangzhou University, 2017.
[18] 王鹏, 余振锡, 余浩. HUC组合支护结构的有限元分析[J]. 四川建材, 2020, 46(11): 45-46. WANG Peng, YU Zhenxi, YU Hao. Finite element analysis of HUC combined support structure [J].Sichuan Building Materials, 2020, 46(11): 45-46.
[19] 王鹏. HUC组合支护结构的理论分析与实践研究[D]. 马鞍山:安徽工业大学, 2021. WANG Peng. Theoretical analysis and practical research on HUC combined support structure[D]. Maanshan: Anhui University of Technology, 2021.
[20] 冯维明. 材料力学(第2版)[M]. 北京: 国防工业出版社, 2015: 32-74.
[21] 刘立新, 叶燕华. 混凝土结构原理(新1版)[M]. 武汉理工大学出版社, 2011: 129-136.
[22] 朱晓天. 渗流作用下粉质黏土地层超深基坑危害数值模拟分析[J]. 隧道与地下工程灾害防治, 2022, 4(2): 98-106. ZHU Xiaotian. Numerical simulation analysis of ultra-deep foundation pit hazard in silty clay stratum under seepage[J]. Tunnel and underground engineering disaster prevention and control, 2022, 4(2): 98-106.
[23] 朱嘉敏. 钢板桩格形围堰三维有限元数值分析及施工方法探究[D]. 北京:中国地质大学, 2020. ZHU Jiamin. Three-dimensional finite element numerical analysis and construction method of steel sheet pile lattice cofferdam[D]. Beijing: China University of Geos-ciences, 2020.
[24] MAWER R W, BYFIELD M P. Reduced modulus action in U-section steel sheet pile retaining walls[J]. Journal of Geotechnical and Geoenvironmental Engineer, 2010, 136(3):439-444.
[25] DIBIAGIO E. Field instrumentation:a geotechnical tool[M]. Norwegian: Norwegian Geotechnical Institute Pub, 1977: 29-40.
[26] 赵明华. 土力学与基础工程[M]. 4版. 武汉理工大学出版社, 2014: 122-129.
[27] 肖杰. 并排新-旧组合路堤桩板墙协同作用机理的模型试验研究[D]. 兰州:兰州交通大学, 2022. XIAO Jie. Model test study on synergistic mechanism of pile-slab wall of side-by-side new-old composite embankment[D]. Lanzhou:Lanzhou Jiaotong University, 2022.
[28] BS8002: Earth retaining structures[S]. London: BSI, 1994.
[1] 周术明,颜东煌. 基于裂缝参数的钢筋混凝土预裂梁刚度试验研究[J]. 山东大学学报 (工学版), 2021, 51(1): 53-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!