山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (5): 30-39.doi: 10.6040/j.issn.1672-3961.0.2024.143
• 电气工程——智慧能源专题 • 上一篇
周前1,李群1,朱丹丹1*,李仪博2
ZHOU Qian1, LI Qun1, ZHU Dandan1*, LI Yibo2
摘要: 针对大规模海上风电场经模块化多电平矩阵换流器(modular multilevel matrix converter, M3C)频率解耦控制并入电网,造成海上低频风电系统惯性水平下降的问题,提出一种基于M3C自适应虚拟惯量的海上低频风电系统协调惯量响应控制策略。提出M3C的自适应虚拟惯量控制策略,根据M3C子模块电容电压变化调整虚拟惯性时间常数;提出M3C工频侧频率与低频侧频率之间的线性耦合方法,使海上风电场通过低频侧频率响应系统频率变化,与M3C共同为系统提供惯量支撑。仿真结果表明,所提策略能够增强M3C的惯量响应能力,避免系统频率发生二次跌落,提高系统频率稳定性。
中图分类号:
| [1] 汤广福,贺之渊,庞辉. 柔性直流输电工程技术研究、应用及发展[J]. 电力系统自动化,2013,37(15):3-14. TANG Guangfu, HE Zhiyuan, PANG Hui. Research, application and development of VSC-HVDC engineering technology[J]. Automation of Electric Power Systems, 2013, 37(15): 3-14. [2] HIMKER R, MERTENS A. Operating-point-optimized control strategy for modular multilevel converters in low-frequency AC transmission systems[J]. IEEE Transac-tions on Power Electronics, 2024, 39(2): 2334-2350. [3] XU Q M, MA F J, LUO A, et al. Analysis and control of M3C-based UPQC for power quality improvement in medium/high-voltage power grid[J]. IEEE Transactions on Power Electronics, 2016, 31(12): 8182-8194. [4] SEHLOFF D, ROALD L A. Low frequency AC trans-mission upgrades with optimal frequency selection[J]. IEEE Transactions on Power Systems, 2022, 37(2): 1437-1448. [5] 张恒旭,高志民,曹永吉,等. 高比例可再生能源接入下电力系统惯量研究综述及展望[J]. 山东大学学报(工学版), 2022, 52(5): 1-13. ZHANG Hengxu, GAO Zhimin, CAO Yongji, et al. Review and prospect of research on power system inertia with high penetration of renewable energy source[J]. Journal of Shandong University(Engineering Science), 2022, 52(5): 1-13. [6] NGO T, LWIN M, SANTOSO S. Steady-state analysis and performance of low frequency AC transmission lines[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3873-3880. [7] 张恒旭,曹永吉,张怡,等. 电力系统频率动态行为衍变与分析方法需求综述[J].山东大学学报(工学版), 2021, 51(5): 42-52. ZHANG Hengxu, CAO Yongji, ZHANG Yi, et al. Review of frequency dynamic behavior evolution and analysis method requirements of power system[J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 42-52. [8] LIU H Z, CHEN Z. Contribution of VSC-HVDC to frequency regulation of power systems with offshore wind generation[J]. IEEE Transactions on Energy Conver-sion, 2015, 30(3): 918-926. [9] ZENG X Y, LIU T Q, WANG S L, et al. Coordinated control of MMC-HVDC system with offshore wind farm for providing emulated inertia support[J]. IET Renewable Power Generation, 2020, 14(5): 673-683. [10] 李宇骏,杨勇,李颖毅,等. 提高电力系统惯性水平的风电场和VSC-HVDC协同控制策略[J]. 中国电机工程学报, 2014, 34(34): 6021-6031. LI Yujun, YANG Yong, LI Yingyi, et al. Coordinated control of wind farms and VSC-HVDC to improve inertia level of power system[J]. Proceedings of the CSEE, 2014, 34(34): 6021-6031. [11] WEN Y F, ZHAN J P, CHUNG C Y, et al. Frequency stability enhancement of integrated AC/VSC-MTDC systems with massive infeed of offshore wind generation[J]. IEEE Transactions on Power Systems, 2018, 33(5): 5135-5146. [12] 袁志昌,吴志力,金强,等. 含直流电压二次调节的VSC-MTDC互联系统频率稳定控制[J]. 电力系统自动化, 2018, 42(23): 9-13. YUAN Zhichang, WU Zhili, JIN Qiang, et al. Frequency stabilization control strategy with DC voltage secondary regulation of VSC-MTDC based interconnected systems[J]. Automation of Electric Power Systems, 2018, 42(23): 9-13. [13] 马欢,杨冬,高志民,等. 基于改进虚拟惯量法的双馈风机频率综合控制策略[J]. 山东大学学报(工学版), 2022, 52(5): 102-110. MA Huan, YANG Dong, GAO Zhimin, et al. Integrated frequency control strategy of DFIGs based on improved virtual inertia method[J]. Journal of Shandong University(Engineering Science), 2022, 52(5): 102-110. [14] LI Y J, ZHANG Z R, YANG Y, et al. Coordinated control of wind farm and VSC-HVDC system using capacitor energy and kinetic energy to improve inertia level of power systems[J]. International Journal of Electrical Power & Energy Systems, 2014, 59: 79-92. [15] LI Y J, XU Z, ØSTERGAARD J, et al. Coordinated control strategies for offshore wind farm integration via VSC-HVDC for system frequency support[J]. IEEE Transactions on Energy Conversion, 2017, 32(3): 843-856. [16] 刘巨,姚伟,文劲宇,等. 大规模风电参与系统频率调整的技术展望[J]. 电网技术, 2014, 38(3): 638-646. LIU Ju, YAO Wei, WEN Jinyu, et al. Prospect of technology for large-scale wind farm participating into power grid frequency regulation[J]. Power System Technology, 2014, 38(3): 638-646. [17] 闫家铭,毕天姝,胥国毅,等. 海上风电经VSC-HVDC并网改进频率控制策略[J]. 华北电力大学学报(自然科学版), 2021, 48(2): 11-19. YAN Jiaming, BI Tianshu, XU Guoyi, et al. An improved frequency control strategy for offshore wind farm connected by VSC-HVDC[J]. Journal of North China Electric Power University(Natural Science Edition), 2021, 48(2): 11-19. [18] LIU Y T, PENG F Z. A modular multilevel converter with self-voltage balancing part Ⅱ: Y-matrix modulation[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2): 1126-1133. [19] LIU S Q, WANG X F, MENG Y Q, et al. A decoupled control strategy of modular multilevel matrix converter for fractional frequency transmission system[J]. IEEE Transactions on Power Delivery, 2017, 32(4): 2111-2121. [20] YU Z Y, ZHANG Z R, XU Z. Electromechanical transient modeling of the low-frequency AC system with modular multilevel matrix converter stations[J]. IEEE Transactions on Power Systems, 2024, 39(1): 921-933. [21] HIMKER R, MERTENS A. Operating-point-optimized control strategy for modular multilevel converters in low-frequency AC transmission systems[J]. IEEE Tran-sactions on Power Electronics, 2024, 39(2): 2334-2350. [22] 吴小丹,李建春,董云龙,等. 面向低频海上风电送出的模块化多电平矩阵变换器综合解耦控制策略[J]. 中国电机工程学报, 2023, 43(8): 3177-3190. WU Xiaodan, LI Jianchun, DONG Yunlong, et al. Comprehensive decoupling control strategy for modular multilevel matrix converter for low frequency offshore wind power transmission[J]. Proceedings of the CSEE, 2023, 43(8): 3177-3190. [23] LI Y B, JIANG Y F, WU Q W, et al. Control strategy for frequency support based on modular multilevel matrix converter with emulation inertia[C] //2023 8th Inter-national Conference on Power and Renewable Energy(ICPRE). Shanghai, China: IEEE, 2023: 1258-1263. [24] 李强,汪成根,唐伟佳. 考虑尾流效应的分频海上风电系统有功功率控制策略[J].南京理工大学学报, 2023, 47(3): 373-381. LI Qiang, WANG Chenggen, TANG Weijia. Active power control of offshore wind power system integrated via fractional frequency transmission system considering wake effect[J]. Journal of Nanjing University of Science and Technology, 2023, 47(3): 373-381. [25] 全国电压电流等级和频率标准化技术委员会. 电能质量: 电力系统频率偏差: GB/T 15945—2008[S]. 北京: 中国标准出版社, 2008: 1. [26] LU Y, CHEN A W, ZHAO G L, et al. Low frequency AC transmission for offshore wind power[C] //2024 27th International Conference on Electrical Machines and Systems(ICEMS). Fukuoka, Japan: IEEE, 2024: 3750-3756. |
| [1] | 韩学山, 李克强. 适应新型电力系统发展的协同调度理论研究[J]. 山东大学学报 (工学版), 2022, 52(5): 14-23. |
| [2] | 宋士瞻,陈浩宇,张健,王坤,郝庆水. 考虑路灯充电桩接入的城市配电网电压控制方法[J]. 山东大学学报 (工学版), 2020, 50(3): 104-110. |
| [3] | 潘志远, 刘超男, 李宏伟, 王婧, 王威, 刘静, 郑鑫. 基于分时电价的含光伏的智慧家庭能量调度方法[J]. 山东大学学报 (工学版), 2020, 50(3): 111-116. |
| [4] | 刘萌,程定一,张文,张恒旭,李宽,张国辉,苏建军. 中央空调紧急控制应对受端电网直流闭锁故障研究[J]. 山东大学学报 (工学版), 2020, 50(1): 72-81. |
| [5] | 孙润稼,朱海南,刘玉田. 基于偏好多目标优化和遗传算法的输电网架重构[J]. 山东大学学报 (工学版), 2019, 49(5): 17-23. |
| [6] | 刘玉田, 孙润稼, 王洪涛, 顾雪平. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报 (工学版), 2019, 49(5): 1-8. |
| [7] | 杨朋朋,韩学山,王 静,孟祥星 . 用拉格朗日松弛法求解概率备用解析表达的机组组合[J]. 山东大学学报(工学版), 2007, 37(2): 58-62 . |
| [8] | 杨大业,孙圣亚,孙媛媛,王姗姗,赵兵,尹睿,孙凯祺,田春义. 混合级联高压直流输电系统受端典型交直流故障特性分析[J]. 山东大学学报 (工学版), 2023, 53(6): 131-142. |
| [9] | 孙东磊,杨思,韩学山,叶平峰,王宪,刘蕊. 高比例风电接入下计及时段间耦合旋转备用响应风险的动态经济调度方法[J]. 山东大学学报 (工学版), 2022, 52(5): 111-122. |
| [10] | 廖卉莲,吴宁,彭华坤,陈琦,叶华,张文,李常刚. 换流站交流滤波器最优投入组数确定方法[J]. 山东大学学报 (工学版), 2022, 52(5): 77-83. |
| [11] | 杨思,王艳,赵斌成,韩学山,刘冬,孙东磊. 含分布式电源的配电网三阶段协同优化调度[J]. 山东大学学报 (工学版), 2022, 52(5): 55-69. |
|
||