您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (2): 156-164.doi: 10.6040/j.issn.1672-3961.0.2023.284

• 机械工程 • 上一篇    

基于摆臂浮子阵列的浮式平台稳性运动响应

董革1,黄淑亭1,2,王俊1,薛钢1,3,4,刘延俊1,3,4*   

  1. 1.山东大学海洋研究院, 山东 青岛266237;2.山东大学深圳研究院, 广东 深圳 518057;3.山东大学机械工程学院, 山东 济南 250061;4.高效洁净机械制造教育部重点实验室(山东大学), 山东 济南 250061
  • 发布日期:2025-04-15
  • 作者简介:董革(1998— ),女,山东阳信人,硕士研究生,主要研究方向为海洋可再生能源装备研发. E-mail:dongge0717@163.com. *通信作者简介:刘延俊(1965— ),男,山东济南人,数授,博士生导师,博士,主要研究方向为海洋可再生能源、深海探测技术及装备开发. E-mail:lyj111ky@163.com
  • 基金资助:
    广东省基础与应用基础研究基金资助项目(2021A1515110687);山东省自然科学基金重大基础研究资助项目(ZR2021ZD23)

The stable motion response of floating platform based on swing arm float array

DONG Ge1, HUANG Shuting1,2, WANG Jun1, XUE Gang1,3,4, LIU Yanjun1,3,4*   

  1. DONG Ge1, HUANG Shuting1, 2, WANG Jun1, XUE Gang1, 3, 4, LIU Yanjun1, 3, 4*(1. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, Shandong, China;
    2. Shenzhen Research Institute of Shandong University, Shenzhen 518057, Guangdong, China;
    3. School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China;
    4. Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education(Shandong University), Jinan 250061, Shandong, China
  • Published:2025-04-15

摘要: 为解决浮式平台在环境复杂海域中的安全和工作性能问题,提出提高浮台稳性的措施。本研究将摆臂浮子式波浪能转换装置搭载到浮式平台上,建立摆臂浮子阵列与浮式平台的多体耦合水动力学模型,利用AQWA水动力仿真软件开展数值模拟和参数化分析,揭示摆臂浮子阵列与浮式平台稳性间的相互作用机理,获得摆臂浮子形状及数量、波浪周期对浮式平台稳性影响的作用规律,寻得最佳的摆臂浮子搭载方式。研究结果表明,搭载摆臂浮子后的浮式平台能更好地降低垂荡和纵摇的晃动幅度,半球型摆臂浮子相比圆柱和圆锥型摆臂浮子能明显地降低平台的纵摇幅度;摆臂浮子阵列数量的增加会逐渐降低平台垂荡和纵摇的晃动幅度;在给定波高、改变周期的情况下,搭载摆臂浮子后的浮式平台能明显降低平台垂荡和纵摇晃动幅度,但随着摆臂浮子数量的增加,平台稳性提高程度越不明显。因此,若只考虑平台稳性因素,可搭载少量的摆臂浮子降低成本,若考虑波浪能装置给平台供电因素,可搭载多量的摆臂浮子提高供能。

关键词: 波浪能, 摆臂浮子阵列, 浮式平台, 吸波减摇, AQWA仿真

Abstract: In order to solve the problem of safety and working performance of floating platform in complex environment sea area, the measures to improve the stability of floating platform were put forward. The swing arm float wave energy conversion device was mounted on the floating platform, a multi-body coupled hydrodynamic model of the swing arm float array and the floating platform was established, and the AQWA hydrodynamic simulation software was used to carry out numerical simulation and parametric analysis to reveal the interaction mechanism between the swing arm float array and the stability of the floating platform, and the effect of the shape and number of swing arm floats and the wave period on the stability of the floating platform were obtained, and the optimal swing arm float carrying method was found. The results showed that the floating platform equipped with swing arm float could better reduce the sloshing amplitude, and the hemispherical swing arm float could significantly reduce the pitch amplitude of the platform compared with cylindrical and conical swing arm floats. The increase of the number of swingarm float arrays would gradually reduce the shaking amplitude of the platform. In the case of a given wave height and changing the period, the floating platform equipped with swing arm floats could significantly reduce the shaking amplitude, but with the increase of the number of swing arm floats, the improvement of platform stability was less obvious. Therefore, if only the stability of the platform was considered, a small number of swing arm floats could be equipped to reduce costs, and if the wave energy device was considered to supply power to the platform, a large number of swing arm floats could be equipped to improve energy supply.

Key words: wave energy, swing-arm float array, floating platforms, wave absorption and roll reduction, AQWA simulation

中图分类号: 

  • P743
[1] SALTER H. Wave power[J]. Energy Review, 1974, 249(5459): 720-724.
[2] CLÉMENT A, MCCULLEN P, FALCAO A, et al. Wave energy in Europe: current status and perspectives[J]. Renewable and Sustainable Energy Reviews, 2002, 6(5): 405-431.
[3] THORPE W. A brief review of wave energy[R]. London, UK: A Report Produced for the UK Department of Trade and Industry, 1999.
[4] 史宏达, 王传崑. 我国海洋能技术的进展与展望[J]. 太阳能, 2017(3): 30-37. SHI Hongda, WANG Chuankun. Progress and prospect of ocean energy technology in China[J]. Solar Energy, 2017(3): 30-37.
[5] 刘延俊, 武爽, 王登帅, 等. 海洋波浪能发电装置研究进展[J].山东大学学报(工学版), 2021, 51(5): 63-75. LIU Yanjun, WU Shuang, WANG Dengshuai, et al. Research progress of ocean wave energy converters[J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 63-75.
[6] 刘延俊, 贾瑞, 张健. 波浪能发电技术的研究现状与发展前景[J]. 海洋技术学报, 2016, 35(5): 100-104. LIU Yanjun, JIA Rui, ZHANG Jian. Research status and prospect of the wave power generation technology[J].Journal of Ocean Technology, 2016, 35(5): 100-104.
[7] 李明伟, 任俊卿, 赵玄烈, 等. 环形阵列波浪能装置水动力特性的数值研究[J]. 水动力学研究与进展, 2021, 36(1): 77-84. LI Mingwei, REN Junqing, ZHAO Xuanlie, et al. Numerical investigation on hydrodynamic performance of annular array of wave energy converters[J]. Chinese Journal of Hydrodynamics, 2021, 36(1): 77-84.
[8] 胡缘, 杨绍辉, 何宏舟, 等. 半潜式多浮体波浪能发电装置的水动力性能分析[J]. 水力发电学报, 2019, 38(9): 91-101. HU Yuan, YANG Shaohui, HE Hongzhou, et al. Hydrodynamic performance analysis of semi-submersible multibody wave power plant[J]. Journal of Hydroelectric Engineering, 2019, 38(9): 91-101.
[9] 刘颖昕. 高效稳定的波浪能液压PTO装置设计及控制策略研究[D]. 济南: 山东大学, 2021. LIU Yingxin. Research on design and control strategy of hydraulic power take-off for an efficient and stable wave energy converter[D]. Jinan: Shandong University, 2021.
[10] LEHMANN M, KARIMPOURA F, GOUDEYB C A, et al. Ocean wave energy in the United States: current status and future perspectives[J].Renewable and Sustainable Energy Reviews, 2017, 74: 1300-1313.
[11] 彭建军. 振荡浮子式波浪能发电装置水动力性能研究[D]. 济南: 山东大学, 2014. PENG Jianjun. Study on hydrodynamic performance for oscillating floater buoy wave energy converter[D]. Jinan: Shandong University, 2014.
[12] 平丽. 振荡浮子式波能转换装置性能的研究[D]. 大连:大连理工大学, 2005. PING Li. Investigation on the performance of the oscillating buoy wave power device[D]. Dalian: Dalian University of Technology, 2005.
[13] 路晴, 史宏达. 中国波浪能技术进展与未来趋势[J]. 海岸工程, 2022, 41(1): 1-12. LU Qing, SHI Hongda. Progress and future trend of wave energy technology in China[J]. Coastal Engineering, 2022, 41(1): 1-12.
[14] 陈坤鑫,盛松伟,张亚群,等.海工型渔业养殖网箱技术现状与发展趋势[J]. 新能源进展, 2020, 8(5): 440-446. CHEN Kunxin, SHENG Songwei, ZHANG Yaqun, et al. Technology status and development trend of ocean engineering aquaculture cage[J]. Advances in New and Renewable Energy, 2020, 8(5): 440-446.
[15] 徐杰,韩立民,张莹.我国深远海养殖的产业特征及其政策支持[J]. 中国渔业经济, 2021, 39(1): 98-107. XU Jie, HAN Limin, ZHANG Ying. Industrial characteristics and policy support of China's deep sea aquaculture[J]. Chinese Fisheries Economics, 2021, 39(1): 98-107.
[16] 王项南,张原飞,郭毅,等.潮流能和波浪能发电装置移动测试平台: 中国, CN111007331A.2020[P]. 2020-05-08.
[17] SOULARD T, BABARIT A. Numerical assessment of the mean power production of a combined wind and wave energy platform[C] // ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, Brazil: OMAE, 2012: 83606.
[18] GASPAR J F M, THIEBAUT F, et al. Compensation of a hybrid platform dynamics using wave energy converters in different sea state conditions[J]. Renewable Energy, 2021, 177: 871-883.
[19] KAMARLOUEI M, GASPAR J F, CALVARIO M, et al. Experimental analysis of wave energy converters concentrically attached on a floating offshore platform[J]. Renewable Energy, 2020, 152: 1171-1185.
[20] PARK J C, WANG C M. Hydrodynamic behaviour of floating polygonal platforms under wave action[J]. Journal of Marine Science and Engineering, 2021, 9(9): 923.
[21] PECHER A, KOFOED J P, LARSEN T. Design specifications for the Hanstholm WEPTOS wave energy converter[J]. Energies, 2012, 5(4): 1001-1017.
[22] MICHAILIDES C, GAO Z, MOAN T. Experimental study of the functionality of a semisubmersible wind turbine combined with flap-typewave energy converters[J]. Renewable Energy, 2016, 93: 675-690.
[23] 廖静. 珠海“澎湖号”网箱平台:让养殖走向深远海[J]. 海洋与渔业, 2019, 307(11): 63-64. LIAO Jing. Zhuhai "Penghu" cage platform: let aquaculture to the far-reaching sea[J]. Ocean and Fishery, 2019, 307(11): 63-64.
[24] 盛松伟,王坤林,吝红军,等.集波浪能和太阳能发电于一体的半潜式深海养殖网箱: 中国, CN201610365276.9.2016[P]. 2018-09-28.
[25] CHENG Z, WEN T R, ONG M C, et al. Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept[J]. Energy, 2019, 171: 190-204.
[26] KAMARLOEI M, GASPAR J F, CALVARIO M, et al. Experimental analysis of wave energy converters concentrically attached on a floating offshore platform[J]. Renewable Energy, 2020: 1171-1185.
[27] GAO Z, WAN L, MICHAILIDES C, et al. Numerical modelling and analysis of combined concepts of floating wind turbines and wave energy converters[C] //International Conference on Offshore Renewable Energy, Glasgow, UK:[s.n.] , 2014.
[28] LEE H, POGULURI S K, BAE Y. Performance analysis of multiple wave energy converters placed on a floating platform in the frequency domain[J].Energies, 2018, 11(2): 406.
[29] BORG M, COLLU M, BRENNAN F P. Use of a wave energy converter as a motion suppression device for floating wind turbines[J]. Energy Procedia, 2013, 35: 223-233.
[30] LI L, GAO Y, YUAN Z, et al. Dynamic response and power production of a floating integrated wind wave and tidal energy system[J]. Renewable Energy, 2017, 116: 412-422.
[31] ZHU H, HU C, SUEYOSHI M, et al. Integration of a semisubmersible floating wind turbine and wave energy converters:an experimental study on motion reduction[J]. Journal of Marine Science and Technology, 2019, 25: 667-674.
[1] 刘颖昕,秦健,刘延俊. 液压蓄能式波浪能发电装置关键参数分析[J]. 山东大学学报 (工学版), 2021, 51(6): 1-8.
[2] 刘延俊,武爽,王登帅,王若宏. 海洋波浪能发电装置研究进展[J]. 山东大学学报 (工学版), 2021, 51(5): 63-75.
[3] 黄淑亭,翟晓宇,刘延俊,史宏达. 淹没深度对三自由度波能浮子获能的影响[J]. 山东大学学报 (工学版), 2020, 50(6): 17-22.
[4] 刘延俊, 王伟, 陈志, 王冬海, 王登帅, 薛钢. 波浪能发电装置浮体形状参数对俘能性能影响[J]. 山东大学学报 (工学版), 2020, 50(6): 1-8.
[5] 王世明1,张福曦1*,胡庆松1,仵悦2. 波浪能发电装置叶轮轮毂半径FLUENT分析[J]. 山东大学学报(工学版), 2012, 42(2): 64-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[5] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[6] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[7] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[8] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[9] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[10] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .