山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (6): 1-8.doi: 10.6040/j.issn.1672-3961.0.2020.160
• 机械工程———海洋工程与技术专题 • 下一篇
刘延俊1,2(),王伟2,陈志1,王冬海3,王登帅2,薛钢2
Yanjun LIU1,2(),Wei WANG2,Zhi CHEN1,Donghai WANG3,Dengshuai WANG2,Gang XUE2
摘要:
为明确振荡浮子式波浪能装置浮体形状参数对俘能性能与工作稳定性的影响, 建立线性能量输出系统作用下的浮体频域计算模型, 推导俘能功率与俘能宽度比的计算公式, 介绍浮体频域数值模拟步骤, 运用ANSYS-AQWA软件开展研究, 计算并对比不同底面形状和圆台半顶角下浮体的俘能功率与俘能宽度比, 探讨浮体形状参数对其俘能性能的影响规律, 为适用于锚泊浮台的波浪能供电装置浮体形状参数优化提供理论基础。研究结果表明:相对于圆锥和圆球底面, 圆台底面的实际制作可行性高, 且在中频波段的俘能性能与俘能稳定性均优于一般圆柱浮体; 上大下小型圆台浮体的俘能性能和工作稳定性较好, 半顶角增加时, 浮体的俘能性能增加且可改善浮体的中频俘能性能, 可根据工作波况合理选择最佳的半顶角, 使得浮体具有最佳的俘能性能与工作稳定性。
中图分类号:
1 | BABARIT A . A database of capture width ratio of wave energy converters[J]. Renewable Energy, 2015, 80 (8): 610- 628. |
2 | 邹进.不同形状多节漂浮式俘能装置运动与功率响应[D].大连: 大连海事大学, 2017. |
ZOU Jin. Responses of motion and power of the floating multi-body wave energy converter with different shapes[D]. Dalian: Dalian Maritime University, 2017. | |
3 |
ZHENG S , ZHANG Y , SHENG W , et al. Maximum wave energy conversion by two interconnected floaters[J]. Journal of Energy Resources Technology-transactions of the ASME, 2016, 138 (3): 032004.
doi: 10.1115/1.4032793 |
4 | ALVES M, TRAYLOR H, SARMENTO A. Hydrodynamic optimization of a wave energy converter using a heave motion buoy[C]//Proceedings of the 7th European Wave and Tidal Energy Conference. Porto, Portugal: [s.n.], 2007: 1-8. |
5 |
MAVRAKOS S A , KATSAOUNIS G M . Effects of floaters' hydrodynamics on the performance of tightly moored wave energy converters[J]. Renewable Power Generation, 2010, 4 (6): 531- 544.
doi: 10.1049/iet-rpg.2009.0191 |
6 | BACKER G D. Hydrodynamic design optimization of wave energy converters consisting of heaving point absorbers[D]. Ghent, Belgium: Ghent University, 2009. |
7 | 张万超.轴对称垂荡浮子式波能装置水动力及能量转换解析研究[D].哈尔滨: 哈尔滨工程大学, 2015. |
ZHANG Wanchao. Analytical solution of hydrodynamic force and energy conversion for axisymmetric heave-buoy wave power devices[D]. Harbin: Harbin Engineering University, 2015. | |
8 | 吴磊.三维双浮体波能装置水动力特性和能量转换效率研究[D].哈尔滨: 哈尔滨工程大学, 2016. |
WU Lei. Study on hydrodynamic performance and energy conversion efficiency of a three-dimensional two-body WEC[D]. Harbin: Harbin Engineering University, 2016. | |
9 | 马哲.振荡浮子式波浪发电装置的水动力学特性研究[D].青岛: 中国海洋大学, 2013. |
MA Zhe. The study on hydrodynamic performance of oscillating floater buoy wave energy converter[D]. Qingdao: Ocean University of China, 2013. | |
10 | 贺彤彤.锚泊浮台波浪能供电装置设计优化与水动力性能研究[D].济南: 山东大学, 2019. |
HE Tongtong. Design optimization and hydrodynamic performance study of wave energy power supply device for mooring platform[D]. Jinan: Shandong University, 2019. | |
11 | 罗华清.振荡浮子波浪能发电装置主浮体及系泊系统动力特性研究[D].济南: 山东大学, 2017. |
LUO Huaqing. Hydrodynamic performance analysis and dynamic characteristics research of mooring system for oscillating buoy wave power device[D]. Jinan: Shandong University, 2017. | |
12 | 程正顺.浮子式波浪能转换装置机理的频域及时域研究[D].上海: 上海交通大学, 2013. |
CHENG Zhengshun. Frequency domain and time domain analysis on mechanism of a point absorber wave energy convertor[D]. Shanghai: Shanghai Jiao Tong University, 2013. | |
13 | FALNES J . Optimum control of oscillation of wave-energy converters[J]. International Journal of Offshore & Polar Engineering, 2002, 12 (2): 147- 155. |
14 |
LOPES M F P , HALS J , GOMES R P F , et al. Experimental and numerical investigation of non-predictive phase-control strategies for a point-absorbing wave energy converter[J]. Ocean Engineering, 2009, 36 (5): 386- 402.
doi: 10.1016/j.oceaneng.2009.01.015 |
15 | HALS J. Modeling and phase control of wave-energy converters[D]. Trondheim, Norway: Norwegian University of Science and Technology, 2010. |
16 |
程正顺, 杨建民, 胡志强, 等. 直接驱动浮子式波浪能转换装置频域模拟研究[J]. 太阳能学报, 2014, 35 (7): 1304- 1310.
doi: 10.3969/j.issn.0254-0096.2014.07.030 |
CHENG Zhengshun , YANG Jianmin , HU Zhiqiang , et al. Frequency domain modeling and analysis of a direct drive point absorber wave energy converter[J]. Acta Energiae Solaris Sinica, 2014, 35 (7): 1304- 1310.
doi: 10.3969/j.issn.0254-0096.2014.07.030 |
|
17 | MULIAWAN M J , GAO Z , MOAN T , et al. Analysis of a two-body floating wave energy converter with particular focus on the effects of power take-off and mooring systems on energy capture[J]. Journal of Offshore Mechanics & Arctic Engineering, 2013, 135 (3): 031902. |
18 | 于龙超.振荡浮子式波浪能转换装置的性能研究[D].哈尔滨: 哈尔滨工程大学, 2016. |
YU Longchao. The performance research on the oscillating float type wave energy converter[D]. Harbin: Harbin Engineering University, 2016. | |
19 |
覃岭, 吴必军. 双圆柱形浮体波能装置振动特性分析[J]. 船舶力学, 2013, (11): 1253- 1261.
doi: 10.3969/j.issn.1007-7294.2013.11.005 |
QIN Ling , WU Bijun . Oscillating properties of a wave energy device consisting of double cylindrical floats[J]. Journal of Ship Mechanics, 2013, (11): 1253- 1261.
doi: 10.3969/j.issn.1007-7294.2013.11.005 |
|
20 |
PRICE A A E , DENT C J , WALLACE A R . On the capture width of wave energy converters[J]. Applied Ocean Research, 2009, 31 (4): 251- 259.
doi: 10.1016/j.apor.2010.04.001 |
[1] | 刘颖昕,秦健,刘延俊. 液压蓄能式波浪能发电装置关键参数分析[J]. 山东大学学报 (工学版), 2021, 51(6): 1-8. |
[2] | 刘延俊,武爽,王登帅,王若宏. 海洋波浪能发电装置研究进展[J]. 山东大学学报 (工学版), 2021, 51(5): 63-75. |
[3] | 黄淑亭,翟晓宇,刘延俊,史宏达. 淹没深度对三自由度波能浮子获能的影响[J]. 山东大学学报 (工学版), 2020, 50(6): 17-22. |
[4] | 王世明1,张福曦1*,胡庆松1,仵悦2. 波浪能发电装置叶轮轮毂半径FLUENT分析[J]. 山东大学学报(工学版), 2012, 42(2): 64-69. |
[5] | 刘华勇,李璐,张大明. 带形状参数的四次Ball曲线[J]. 山东大学学报(工学版), 2011, 41(2): 23-28. |
|