您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (6): 1-8.doi: 10.6040/j.issn.1672-3961.0.2020.160

• 机械工程———海洋工程与技术专题 •    下一篇

波浪能发电装置浮体形状参数对俘能性能影响

刘延俊1,2(),王伟2,陈志1,王冬海3,王登帅2,薛钢2   

  1. 1. 山东大学机械工程学院高效洁净机械制造教育部重点实验室, 山东 济南 250061
    2. 山东大学海洋研究院, 山东 青岛 266237
    3. 中电科海洋信息研究院有限公司, 北京 100041
  • 收稿日期:2020-05-12 出版日期:2020-12-20 发布日期:2020-12-15
  • 作者简介:刘延俊(1965—),男,山东济南人,教授, 博士生导师,主要研究方向为流体动力控制,波浪能发电技术,深海探测技术与装备. E-mail:lyj111ky@163.com|刘延俊,1965年7月生,工学博士,教授,博士生导师。主要从事流体动力控制、海洋能开发利用、深海探测技术与装备方面的教学与科研工作,承担国家级项目6项,自然资源部海洋能专项与海洋公益项目5项,山东省科技厅科技攻关与重大创新工程项目5项,企业委托课题30余项;指导博士15人,硕士80余人;出版专著7部,液压与气压传动教材8部,发表学术论文80余篇。兼任中国机械工程学会高级会员, 中国机械工程学会流体传动与控制分会委员,山东机械工程学会液压气动专业委员会副主任委员,中国海洋工程咨询协会海洋能分会、深海技术与装备分会常务理事
  • 基金资助:
    海洋可再生能源专项资金资助项目(GHME2017YY01);NSFC-山东联合基金资助项目(U1706230);山东省重大科技创新工程资助项目(2018CXGC0104)

The influence of shape parameters of wave energy device floating body on energy capture characteristics

Yanjun LIU1,2(),Wei WANG2,Zhi CHEN1,Donghai WANG3,Dengshuai WANG2,Gang XUE2   

  1. 1. Key Laboratory of High-efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China
    2. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, Shandong, China
    3. China Electric Technology Ocean Information Technology Research Institute Co., Ltd., Beijing 100041, Beijing, China
  • Received:2020-05-12 Online:2020-12-20 Published:2020-12-15

摘要:

为明确振荡浮子式波浪能装置浮体形状参数对俘能性能与工作稳定性的影响, 建立线性能量输出系统作用下的浮体频域计算模型, 推导俘能功率与俘能宽度比的计算公式, 介绍浮体频域数值模拟步骤, 运用ANSYS-AQWA软件开展研究, 计算并对比不同底面形状和圆台半顶角下浮体的俘能功率与俘能宽度比, 探讨浮体形状参数对其俘能性能的影响规律, 为适用于锚泊浮台的波浪能供电装置浮体形状参数优化提供理论基础。研究结果表明:相对于圆锥和圆球底面, 圆台底面的实际制作可行性高, 且在中频波段的俘能性能与俘能稳定性均优于一般圆柱浮体; 上大下小型圆台浮体的俘能性能和工作稳定性较好, 半顶角增加时, 浮体的俘能性能增加且可改善浮体的中频俘能性能, 可根据工作波况合理选择最佳的半顶角, 使得浮体具有最佳的俘能性能与工作稳定性。

关键词: 波浪能, 振荡浮子装置, 形状参数, 俘能性能, AQWA仿真

Abstract:

To clarify the effect of the floating body′s shape parameters on the energy capture performance and working stability, an oscillating float type wave energy converter (WEC) model with linear power take-off system was established. Frequency domain calculation theory was used to deduce the formulas of energy capture power and energy capture width ratio. After introducing the numerical simulation steps of floating body in frequency domain, ANSYS-AQWA software was used to investigate the floater's energy capture power and energy capture width ratio with different bottom shapes and half vertex angles. Influence of shape parameters on the energy capture performance was drawn to provide a theoretical basis for the shape optimization of the floating body applied to the wave power supply device and floating platform. The results showed that the practical fabrication feasibility of circular truncated cone bottom was higher than that of cone and sphere. The energy capture characteristics and stability of circular truncated cone bottom were better than that of general cylindrical floating body in the intermediate wave frequency band. The energy capture performance and working stability of circular truncated cone floating body with big top and small bottom were better. The energy capture performance under intermediate frequency waves could be improved with the increase of the half vertex angle. The optimal power capture performance and working stability could be achieved with a proper apex angle.

Key words: wave energy, oscillating buoy wave energy converter, shape parameter, energy capture characteristics, AQWA simulation

中图分类号: 

  • TH137

图1

不同底面形状浮体结构示意图"

图2

不同底面形状浮体的垂荡幅值响应算子曲线"

图3

不同底面形状浮体所受的单位波高波浪激励力"

图4

不同底面形状浮体的垂荡俘能功率"

图5

圆台型浮体的结构示意图"

图6

不同半顶角的垂荡幅值响应算子曲线(α≥0°)"

图7

不同半顶角的垂荡幅值响应算子曲线(α≤0°)"

图8

不同半顶角圆台型浮体所受的单位波高波浪激励力(α≥0°)"

图9

不同半顶角圆台型浮体所受的单位波高波浪激励力(α≤0°)"

图10

不同半顶角圆台型浮体垂荡俘能功率(α≥0°)"

图11

不同半顶角圆台型浮体垂荡俘能功率(α≤0°)"

图12

不同半顶角圆台型浮体垂荡俘能宽度比(α≥0°)"

图13

不同半顶角圆台型浮体垂荡俘能宽度比(α≤0°)"

图14

垂荡俘能功率随圆台半顶角的变化曲线"

1 BABARIT A . A database of capture width ratio of wave energy converters[J]. Renewable Energy, 2015, 80 (8): 610- 628.
2 邹进.不同形状多节漂浮式俘能装置运动与功率响应[D].大连: 大连海事大学, 2017.
ZOU Jin. Responses of motion and power of the floating multi-body wave energy converter with different shapes[D]. Dalian: Dalian Maritime University, 2017.
3 ZHENG S , ZHANG Y , SHENG W , et al. Maximum wave energy conversion by two interconnected floaters[J]. Journal of Energy Resources Technology-transactions of the ASME, 2016, 138 (3): 032004.
doi: 10.1115/1.4032793
4 ALVES M, TRAYLOR H, SARMENTO A. Hydrodynamic optimization of a wave energy converter using a heave motion buoy[C]//Proceedings of the 7th European Wave and Tidal Energy Conference. Porto, Portugal: [s.n.], 2007: 1-8.
5 MAVRAKOS S A , KATSAOUNIS G M . Effects of floaters' hydrodynamics on the performance of tightly moored wave energy converters[J]. Renewable Power Generation, 2010, 4 (6): 531- 544.
doi: 10.1049/iet-rpg.2009.0191
6 BACKER G D. Hydrodynamic design optimization of wave energy converters consisting of heaving point absorbers[D]. Ghent, Belgium: Ghent University, 2009.
7 张万超.轴对称垂荡浮子式波能装置水动力及能量转换解析研究[D].哈尔滨: 哈尔滨工程大学, 2015.
ZHANG Wanchao. Analytical solution of hydrodynamic force and energy conversion for axisymmetric heave-buoy wave power devices[D]. Harbin: Harbin Engineering University, 2015.
8 吴磊.三维双浮体波能装置水动力特性和能量转换效率研究[D].哈尔滨: 哈尔滨工程大学, 2016.
WU Lei. Study on hydrodynamic performance and energy conversion efficiency of a three-dimensional two-body WEC[D]. Harbin: Harbin Engineering University, 2016.
9 马哲.振荡浮子式波浪发电装置的水动力学特性研究[D].青岛: 中国海洋大学, 2013.
MA Zhe. The study on hydrodynamic performance of oscillating floater buoy wave energy converter[D]. Qingdao: Ocean University of China, 2013.
10 贺彤彤.锚泊浮台波浪能供电装置设计优化与水动力性能研究[D].济南: 山东大学, 2019.
HE Tongtong. Design optimization and hydrodynamic performance study of wave energy power supply device for mooring platform[D]. Jinan: Shandong University, 2019.
11 罗华清.振荡浮子波浪能发电装置主浮体及系泊系统动力特性研究[D].济南: 山东大学, 2017.
LUO Huaqing. Hydrodynamic performance analysis and dynamic characteristics research of mooring system for oscillating buoy wave power device[D]. Jinan: Shandong University, 2017.
12 程正顺.浮子式波浪能转换装置机理的频域及时域研究[D].上海: 上海交通大学, 2013.
CHENG Zhengshun. Frequency domain and time domain analysis on mechanism of a point absorber wave energy convertor[D]. Shanghai: Shanghai Jiao Tong University, 2013.
13 FALNES J . Optimum control of oscillation of wave-energy converters[J]. International Journal of Offshore & Polar Engineering, 2002, 12 (2): 147- 155.
14 LOPES M F P , HALS J , GOMES R P F , et al. Experimental and numerical investigation of non-predictive phase-control strategies for a point-absorbing wave energy converter[J]. Ocean Engineering, 2009, 36 (5): 386- 402.
doi: 10.1016/j.oceaneng.2009.01.015
15 HALS J. Modeling and phase control of wave-energy converters[D]. Trondheim, Norway: Norwegian University of Science and Technology, 2010.
16 程正顺, 杨建民, 胡志强, 等. 直接驱动浮子式波浪能转换装置频域模拟研究[J]. 太阳能学报, 2014, 35 (7): 1304- 1310.
doi: 10.3969/j.issn.0254-0096.2014.07.030
CHENG Zhengshun , YANG Jianmin , HU Zhiqiang , et al. Frequency domain modeling and analysis of a direct drive point absorber wave energy converter[J]. Acta Energiae Solaris Sinica, 2014, 35 (7): 1304- 1310.
doi: 10.3969/j.issn.0254-0096.2014.07.030
17 MULIAWAN M J , GAO Z , MOAN T , et al. Analysis of a two-body floating wave energy converter with particular focus on the effects of power take-off and mooring systems on energy capture[J]. Journal of Offshore Mechanics & Arctic Engineering, 2013, 135 (3): 031902.
18 于龙超.振荡浮子式波浪能转换装置的性能研究[D].哈尔滨: 哈尔滨工程大学, 2016.
YU Longchao. The performance research on the oscillating float type wave energy converter[D]. Harbin: Harbin Engineering University, 2016.
19 覃岭, 吴必军. 双圆柱形浮体波能装置振动特性分析[J]. 船舶力学, 2013, (11): 1253- 1261.
doi: 10.3969/j.issn.1007-7294.2013.11.005
QIN Ling , WU Bijun . Oscillating properties of a wave energy device consisting of double cylindrical floats[J]. Journal of Ship Mechanics, 2013, (11): 1253- 1261.
doi: 10.3969/j.issn.1007-7294.2013.11.005
20 PRICE A A E , DENT C J , WALLACE A R . On the capture width of wave energy converters[J]. Applied Ocean Research, 2009, 31 (4): 251- 259.
doi: 10.1016/j.apor.2010.04.001
[1] 刘颖昕,秦健,刘延俊. 液压蓄能式波浪能发电装置关键参数分析[J]. 山东大学学报 (工学版), 2021, 51(6): 1-8.
[2] 刘延俊,武爽,王登帅,王若宏. 海洋波浪能发电装置研究进展[J]. 山东大学学报 (工学版), 2021, 51(5): 63-75.
[3] 黄淑亭,翟晓宇,刘延俊,史宏达. 淹没深度对三自由度波能浮子获能的影响[J]. 山东大学学报 (工学版), 2020, 50(6): 17-22.
[4] 王世明1,张福曦1*,胡庆松1,仵悦2. 波浪能发电装置叶轮轮毂半径FLUENT分析[J]. 山东大学学报(工学版), 2012, 42(2): 64-69.
[5] 刘华勇,李璐,张大明. 带形状参数的四次Ball曲线[J]. 山东大学学报(工学版), 2011, 41(2): 23-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 薛翊国,李术才,赵岩,苏茂鑫,李为腾,丁志海. 青岛胶州湾海底隧道F44含水断层注浆前后TSP探测分析[J]. 山东大学学报(工学版), 2009, 39(2): 108 -112 .
[2] 张恭孝,杨荣华 . 水杨醛缩甲基氨基硫脲Schiff碱配合物的合成与表征[J]. 山东大学学报(工学版), 2008, 38(3): 108 -111 .
[3] 罗运虎,邢丽冬,王勤,刘海春,翁晓光 . 需求侧2种可中断负荷备用市场报价策略的协调[J]. 山东大学学报(工学版), 2008, 38(3): 77 -80 .
[4] 郑桂兰,关瑞芳,隋 肃,李建权,李国忠 . 反应型反光型道路标线涂料识别效果研究[J]. 山东大学学报(工学版), 2007, 37(1): 86 -89 .
[5] 孙宗耀,刘允刚 . 一类2维不确定非线性系统自适应输出反馈镇定[J]. 山东大学学报(工学版), 2007, 37(5): 34 -39 .
[6] 宋明大,王威强,李梦丽,徐书根 . 多层包扎尿素合成塔无损评价方法[J]. 山东大学学报(工学版), 2007, 37(4): 50 -54 .
[7] 张霄 李术才 张庆松 刘钦 张宁 刘斌. TSP信号采集质量影响因素的现场试验研究[J]. 山东大学学报(工学版), 2009, 39(4): 25 -29 .
[8] 韩雪. 平庄西露天煤矿滑坡灾害远程监测实例分析[J]. 山东大学学报(工学版), 2009, 39(4): 116 -120 .
[9] 廖伙木,董增川, 束龙仓,贠汝安 . 地下水位预报中的组合时间序列分析法[J]. 山东大学学报(工学版), 2008, 38(2): 96 -100 .
[10] 李勇 杨强 朱维申 李术才 张强勇 王汉鹏. 静态电阻与光纤应变测试技术在岩土地质力学模型试验中的应用[J]. 山东大学学报(工学版), 2009, 39(3): 129 -134 .