山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (2): 156-164.doi: 10.6040/j.issn.1672-3961.0.2023.284
• 机械工程 • 上一篇
董革1,黄淑亭1,2,王俊1,薛钢1,3,4,刘延俊1,3,4*
DONG Ge1, HUANG Shuting1,2, WANG Jun1, XUE Gang1,3,4, LIU Yanjun1,3,4*
摘要: 为解决浮式平台在环境复杂海域中的安全和工作性能问题,提出提高浮台稳性的措施。本研究将摆臂浮子式波浪能转换装置搭载到浮式平台上,建立摆臂浮子阵列与浮式平台的多体耦合水动力学模型,利用AQWA水动力仿真软件开展数值模拟和参数化分析,揭示摆臂浮子阵列与浮式平台稳性间的相互作用机理,获得摆臂浮子形状及数量、波浪周期对浮式平台稳性影响的作用规律,寻得最佳的摆臂浮子搭载方式。研究结果表明,搭载摆臂浮子后的浮式平台能更好地降低垂荡和纵摇的晃动幅度,半球型摆臂浮子相比圆柱和圆锥型摆臂浮子能明显地降低平台的纵摇幅度;摆臂浮子阵列数量的增加会逐渐降低平台垂荡和纵摇的晃动幅度;在给定波高、改变周期的情况下,搭载摆臂浮子后的浮式平台能明显降低平台垂荡和纵摇晃动幅度,但随着摆臂浮子数量的增加,平台稳性提高程度越不明显。因此,若只考虑平台稳性因素,可搭载少量的摆臂浮子降低成本,若考虑波浪能装置给平台供电因素,可搭载多量的摆臂浮子提高供能。
中图分类号:
[1] SALTER H. Wave power[J]. Energy Review, 1974, 249(5459): 720-724. [2] CLÉMENT A, MCCULLEN P, FALCAO A, et al. Wave energy in Europe: current status and perspectives[J]. Renewable and Sustainable Energy Reviews, 2002, 6(5): 405-431. [3] THORPE W. A brief review of wave energy[R]. London, UK: A Report Produced for the UK Department of Trade and Industry, 1999. [4] 史宏达, 王传崑. 我国海洋能技术的进展与展望[J]. 太阳能, 2017(3): 30-37. SHI Hongda, WANG Chuankun. Progress and prospect of ocean energy technology in China[J]. Solar Energy, 2017(3): 30-37. [5] 刘延俊, 武爽, 王登帅, 等. 海洋波浪能发电装置研究进展[J].山东大学学报(工学版), 2021, 51(5): 63-75. LIU Yanjun, WU Shuang, WANG Dengshuai, et al. Research progress of ocean wave energy converters[J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 63-75. [6] 刘延俊, 贾瑞, 张健. 波浪能发电技术的研究现状与发展前景[J]. 海洋技术学报, 2016, 35(5): 100-104. LIU Yanjun, JIA Rui, ZHANG Jian. Research status and prospect of the wave power generation technology[J].Journal of Ocean Technology, 2016, 35(5): 100-104. [7] 李明伟, 任俊卿, 赵玄烈, 等. 环形阵列波浪能装置水动力特性的数值研究[J]. 水动力学研究与进展, 2021, 36(1): 77-84. LI Mingwei, REN Junqing, ZHAO Xuanlie, et al. Numerical investigation on hydrodynamic performance of annular array of wave energy converters[J]. Chinese Journal of Hydrodynamics, 2021, 36(1): 77-84. [8] 胡缘, 杨绍辉, 何宏舟, 等. 半潜式多浮体波浪能发电装置的水动力性能分析[J]. 水力发电学报, 2019, 38(9): 91-101. HU Yuan, YANG Shaohui, HE Hongzhou, et al. Hydrodynamic performance analysis of semi-submersible multibody wave power plant[J]. Journal of Hydroelectric Engineering, 2019, 38(9): 91-101. [9] 刘颖昕. 高效稳定的波浪能液压PTO装置设计及控制策略研究[D]. 济南: 山东大学, 2021. LIU Yingxin. Research on design and control strategy of hydraulic power take-off for an efficient and stable wave energy converter[D]. Jinan: Shandong University, 2021. [10] LEHMANN M, KARIMPOURA F, GOUDEYB C A, et al. Ocean wave energy in the United States: current status and future perspectives[J].Renewable and Sustainable Energy Reviews, 2017, 74: 1300-1313. [11] 彭建军. 振荡浮子式波浪能发电装置水动力性能研究[D]. 济南: 山东大学, 2014. PENG Jianjun. Study on hydrodynamic performance for oscillating floater buoy wave energy converter[D]. Jinan: Shandong University, 2014. [12] 平丽. 振荡浮子式波能转换装置性能的研究[D]. 大连:大连理工大学, 2005. PING Li. Investigation on the performance of the oscillating buoy wave power device[D]. Dalian: Dalian University of Technology, 2005. [13] 路晴, 史宏达. 中国波浪能技术进展与未来趋势[J]. 海岸工程, 2022, 41(1): 1-12. LU Qing, SHI Hongda. Progress and future trend of wave energy technology in China[J]. Coastal Engineering, 2022, 41(1): 1-12. [14] 陈坤鑫,盛松伟,张亚群,等.海工型渔业养殖网箱技术现状与发展趋势[J]. 新能源进展, 2020, 8(5): 440-446. CHEN Kunxin, SHENG Songwei, ZHANG Yaqun, et al. Technology status and development trend of ocean engineering aquaculture cage[J]. Advances in New and Renewable Energy, 2020, 8(5): 440-446. [15] 徐杰,韩立民,张莹.我国深远海养殖的产业特征及其政策支持[J]. 中国渔业经济, 2021, 39(1): 98-107. XU Jie, HAN Limin, ZHANG Ying. Industrial characteristics and policy support of China's deep sea aquaculture[J]. Chinese Fisheries Economics, 2021, 39(1): 98-107. [16] 王项南,张原飞,郭毅,等.潮流能和波浪能发电装置移动测试平台: 中国, CN111007331A.2020[P]. 2020-05-08. [17] SOULARD T, BABARIT A. Numerical assessment of the mean power production of a combined wind and wave energy platform[C] // ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, Brazil: OMAE, 2012: 83606. [18] GASPAR J F M, THIEBAUT F, et al. Compensation of a hybrid platform dynamics using wave energy converters in different sea state conditions[J]. Renewable Energy, 2021, 177: 871-883. [19] KAMARLOUEI M, GASPAR J F, CALVARIO M, et al. Experimental analysis of wave energy converters concentrically attached on a floating offshore platform[J]. Renewable Energy, 2020, 152: 1171-1185. [20] PARK J C, WANG C M. Hydrodynamic behaviour of floating polygonal platforms under wave action[J]. Journal of Marine Science and Engineering, 2021, 9(9): 923. [21] PECHER A, KOFOED J P, LARSEN T. Design specifications for the Hanstholm WEPTOS wave energy converter[J]. Energies, 2012, 5(4): 1001-1017. [22] MICHAILIDES C, GAO Z, MOAN T. Experimental study of the functionality of a semisubmersible wind turbine combined with flap-typewave energy converters[J]. Renewable Energy, 2016, 93: 675-690. [23] 廖静. 珠海“澎湖号”网箱平台:让养殖走向深远海[J]. 海洋与渔业, 2019, 307(11): 63-64. LIAO Jing. Zhuhai "Penghu" cage platform: let aquaculture to the far-reaching sea[J]. Ocean and Fishery, 2019, 307(11): 63-64. [24] 盛松伟,王坤林,吝红军,等.集波浪能和太阳能发电于一体的半潜式深海养殖网箱: 中国, CN201610365276.9.2016[P]. 2018-09-28. [25] CHENG Z, WEN T R, ONG M C, et al. Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept[J]. Energy, 2019, 171: 190-204. [26] KAMARLOEI M, GASPAR J F, CALVARIO M, et al. Experimental analysis of wave energy converters concentrically attached on a floating offshore platform[J]. Renewable Energy, 2020: 1171-1185. [27] GAO Z, WAN L, MICHAILIDES C, et al. Numerical modelling and analysis of combined concepts of floating wind turbines and wave energy converters[C] //International Conference on Offshore Renewable Energy, Glasgow, UK:[s.n.] , 2014. [28] LEE H, POGULURI S K, BAE Y. Performance analysis of multiple wave energy converters placed on a floating platform in the frequency domain[J].Energies, 2018, 11(2): 406. [29] BORG M, COLLU M, BRENNAN F P. Use of a wave energy converter as a motion suppression device for floating wind turbines[J]. Energy Procedia, 2013, 35: 223-233. [30] LI L, GAO Y, YUAN Z, et al. Dynamic response and power production of a floating integrated wind wave and tidal energy system[J]. Renewable Energy, 2017, 116: 412-422. [31] ZHU H, HU C, SUEYOSHI M, et al. Integration of a semisubmersible floating wind turbine and wave energy converters:an experimental study on motion reduction[J]. Journal of Marine Science and Technology, 2019, 25: 667-674. |
[1] | 刘颖昕,秦健,刘延俊. 液压蓄能式波浪能发电装置关键参数分析[J]. 山东大学学报 (工学版), 2021, 51(6): 1-8. |
[2] | 刘延俊,武爽,王登帅,王若宏. 海洋波浪能发电装置研究进展[J]. 山东大学学报 (工学版), 2021, 51(5): 63-75. |
[3] | 黄淑亭,翟晓宇,刘延俊,史宏达. 淹没深度对三自由度波能浮子获能的影响[J]. 山东大学学报 (工学版), 2020, 50(6): 17-22. |
[4] | 刘延俊, 王伟, 陈志, 王冬海, 王登帅, 薛钢. 波浪能发电装置浮体形状参数对俘能性能影响[J]. 山东大学学报 (工学版), 2020, 50(6): 1-8. |
[5] | 王世明1,张福曦1*,胡庆松1,仵悦2. 波浪能发电装置叶轮轮毂半径FLUENT分析[J]. 山东大学学报(工学版), 2012, 42(2): 64-69. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 3
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 24
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|