您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (4): 76-85.doi: 10.6040/j.issn.1672-3961.0.2024.057

• 机器学习与数据挖掘 • 上一篇    下一篇

基于异常点检测的心理健康辅助诊断方法

乔慧妍1,段学龙1,解驰皓2,赵冬慧1,马玉玲1*   

  1. 1.山东建筑大学计算机科学与技术学院, 山东 济南 250101;2.聆心云(山东)智能科技有限公司, 山东 济南 250013
  • 发布日期:2024-08-20
  • 作者简介:乔慧妍(1998— ),女,河南焦作人,硕士研究生,主要研究方向为教育数据挖掘. E-mail:hyqiao0205@163.com. *通信作者简介:马玉玲(1979— ),女,河南濮阳人,副教授,硕士生导师,博士,主要研究方向为机器学习与教育大数据挖掘. E-mail:mayuling20@sdjzu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(62177031,62077033);山东省自然科学基金资助项目(ZR2021MF044);山东省教育教学研究课题资助项目(2021JXY012);教育部产学合作协同育人项目(202102423045);2023年度教育部人文社会科学研究专项任务资助项目(高校辅导员研究)(2023JDSZ3174);2023年度济南市市校融合发展战略工程资助项目(JNSX2023064)

Approach of assisted diagnosis for mental health based on outlier detection

QIAO Huiyan1, DUAN Xuelong1, XIE Chihao2, ZHAO Donghui1, MA Yuling1*   

  1. 1. School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, Shandong, China;
    2. Lingxinyun(Shandong)Intelligent Technology Co., Ltd., Jinan 250013, Shandong, China
  • Published:2024-08-20

摘要: 采用异常点检测算法研究心理健康辅助诊断任务,提出并设计一种基于异常点检测的心理健康辅助诊断方法,有效识别心理沙盘数据中的异常样本。在构建心理健康辅助诊断模型过程中,分析数据特性,提取与用户心理健康状况高度相关的特征,构建虚拟心理沙盘数据集;使用4种传统异常点检测算法,识别沙盘数据集中异常样本,设计融合策略,集成不同算法检测结果,提高异常样本检测精准性和效率,辅助人类专家进行精确诊断;对模型预测性能和结果进行详细分析,结合基线模型进行对比评价。试验结果表明,基于异常点检测的心理健康辅助诊断方法在沙具使用相似度、距离度量、聚类性能等3项指标上获得较好性能。

关键词: 心理健康辅助诊断, 虚拟心理沙盘, 机器学习, 异常点检测, 心理健康

中图分类号: 

  • TP391
[1] World Health Organization. Depression and other common mental disorders: global health estimates[R]. Geneva, Switzerland: World Health Organi-zation, 2017.
[2] 靳宇倡, 张政, 郑佩璇, 等. 远程心理健康服务:应用、优势及挑战[J]. 心理科学进展, 2022, 30(1):141-156. JIN Yuchang, ZHANG Zheng, ZHENG Peixuan, et al. Tele-mental health services: applications, benefits and challenges[J]. Advances in Psychological Science, 2022, 30(1):141-156.
[3] 刘媛媛. 基于SCL-90量表的中国人群心理健康现状及30年变化特征分析[D]. 西安: 中国人民解放军空军军医大学, 2018. LIU Yuanyuan. Analysis of the current situation and 30-year change characteristics of the mental health of the Chinese population based on the SCL-90 scale[D]. Xi'an: Chinese People's Liberation Army Air Force Military Medical University, 2018.
[4] 林仲贤, 丁锦红. 心理测验的含义及其应用[J]. 中国临床康复, 2004(3):522-523. LIN Zhongxian, DING Jinhong. The meaning and application of mental test[J]. Clinical Rehabilitation in China, 2004(3):522-523.
[5] 张雯, 张日昇, 姜智玲. 强迫症状大学生的箱庭作品特征研究[J]. 中国临床心理学杂志, 2011, 19(4):553-557. ZHANG Wen, ZHANG Risheng, JIANG Zhiling. A study on the characteristics of obsessions in college students with obsessive symptoms[J]. Chinese Journal of Clinical Psychology, 2011, 19(4):553-557.
[6] EVANS T M, BIRA L, GASTELUM J B, et al. Evidence for a mental health crisis in graduate education[J]. Nature Biotechnology, 2018, 36(3): 282-284.
[7] 昌敬惠, 袁愈新, 王冬. 新型冠状病毒肺炎疫情下大学生心理健康状况及影响因素分析[J]. 南方医科大学学报, 2020, 40(2):171-176. CHANG Jinghui, YUAN Yuxin, WANG Dong. Analysis of mental health status and influencing factors of college students under novel coronavirus pneumonia epidemic[J]. Journal of Southern Medical University, 2020, 40(2):171-176.
[8] 聂敏. 高校学生行为分析及应用研究[D]. 成都: 电子科技大学, 2020. NIE Min. College student behavior analysis and application research[D]. Chengdu: University of Electronic Science and Technology, 2020.
[9] 江光荣, 李丹阳, 任志洪, 等. 中国国民心理健康素养的现状与特点[J]. 心理学报, 2021, 53(2):182-201. JIANG Guangrong, LI Danyang, REN Zhihong, et al. The current situation and characteristics of Chinese national mental health literacy[J]. Acta Psychologica, 2021, 53(2):182-201.
[10] NAYAK M, NARAYAN K A. Strengths and weaknesses of online surveys[J]. Technology, 2019, 6(7):0837-2405053138.
[11] HAMES J L, BELL D J, PEREZ-LIMA L M, et al. Navigating uncharted waters: considerations for training clinics in the rapid transition to telepsychology and telesupervision during COVID-19[J]. Journal of Psychotherapy Integration, 2020, 30(2): 348.
[12] INCHAUSTI F, MACBETH A, HASSON-OHAYON I, et al. Telepsychotherapy in the age of COVID-19: a commentary[J]. 2020, 30(2):394-405.
[13] 陈红, 汪卫华, 袁水平, 等. 远程心理咨询与面对面咨询的对比研究[J]. 精神医学杂志, 2010, 23(2):128-129. CHEN Hong, WANG Weihua, YUAN Shuiping, et al. A comparative study of remote psychological counseling and face-to-face counseling[J]. Military Medical Journal, 2010, 23(2):128-129.
[14] SUN P, QU Y X, WU J, et al. Improving Chinese teachers' stress coping ability through group sandplay[J]. The Spanish Journal of Psychology, 2018: 65-72.
[15] ROESLER C. Sandplay therapy: an overview of theory, applications and evidence base[J]. The Arts in Psychotherapy, 2019, 64: 84-94.
[16] GUO J, LI D. Effects of image-sandplay therapy on the mental health and subjective well-being of children with autism[J]. Iranian Journal of Public Health, 2021, 50(10): 2046-2054.
[17] 张伯全, 乔冬冬, 王汝展, 等. VR沙盘与实体沙盘用于大学新生初始心理测查自身对照研究[J]. 精神医学杂志, 2018, 31(5):359-362. ZHANG Boquan, QIAO Dongdong, WANG Ruzhan, et al. Self-contrast study of VR sand table and physical sand table used in the initial psychological test of college freshmen[J]. Journal of Psychiatry, 2018, 31(5): 359-362.
[18] 韦玉. 面向广泛型焦虑群体的虚拟沙盘自检系统设计研究[D]. 广州: 华南理工大学, 2021. WEI Yu. Research on the design of virtual sand table self-inspection system for general anxiety groups[D]. Guangzhou: South China University of Technology, 2021.
[19] DOOSHIMA M P, CHIDOZIE E N, ADEMOLA B J, et al. A predictive model for the risk of mental illness in Nigeria using data mining[J]. International Journal of Immunology, 2018, 6(1): 5-16.
[20] 孙伟平. 决策树技术在大学生心理健康测评中的应用研究[D]. 郑州: 郑州大学, 2020. SUN Weiping. Research on the application of decision tree technology in the evaluation of mental health of college students[D]. Zhengzhou: Zhengzhou Univer-sity, 2020.
[21] 林靖怡, 黎大坤, 吴平鑫, 等. 基于社交数据挖掘的心理健康预警建模与分析[J]. 电子技术与软件工程, 2020(8):172-173. LIN Jingyi, LI Dakun, WU Pingxin, et al, Modeling and analysis of mental health early warning based on social data mining[J]. Electronic Technology and Software Engineering, 2020(8):172-173.
[22] 赵丹. 基于决策树的大学生心理危机预警模型研究及应用[D]. 北京: 北京林业大学, 2020. ZHAO Dan. Research and application of college students' psychological crisis early warning model based on decision tree[D]. Beijing: Beijing Forestry University, 2020.
[23] 吴婷. 基于k-means聚类算法的大学生心理管理系统研究[D]. 武汉: 湖北工业大学, 2017. WU Ting. Research on psychological management system of college students based on k-means clustering algorithm[D]. Wuhan: Hubei University of Technology, 2017.
[24] 王震震. 心理云大数据平台中用户心理画像的研究与应用[D]. 北京: 北京邮电大学, 2021. WANG Zhenzhen. Research and application of user psychological portrait in psychological cloud big data platform[D]. Beijing: Beijing University of Posts and Telecommunications, 2021.
[25] 赵向兵, 白栋. 基于Python的学生健康数据聚类分析系统[J]. 电子技术与软件工程, 2021(14):183-185. ZHAO Xiangbing, BAI Dong. Student health data cluster analysis system based on Python[J]. Electronic Technology and Software Engineering, 2021(14):183-185.
[26] 梁娟, 罗海据. 大数据挖掘方法在大学生心理预警系统中的应用[J]. 中国学校卫生, 2018, 39(12):1821-1824. LIANG Juan, LUO Haiju. Application of big data mining method in college students' psychological early warning system[J]. Chinese School Hygiene, 2018, 39(12):1821-1824.
[27] 侯震. 基于数据挖掘的高校学生心理测评与辅导系统的设计与实现[D]. 西安: 西安电子科技大学, 2020. HOU Zhen. Design and implementation of college students' psychological assessment and counseling system based on data mining[D]. Xi'an: Xidian Univer-sity, 2020.
[28] 刘红红.基于数据挖掘的心理疾病预警分析技术研究[J].电子设计工程, 2021, 29(15):31-35. LIU Honghong. Research on early warning analysis technology of mental illness based on data mining[J]. Electronic Design Engineering, 2021, 29(15):31-35.
[29] 祝彦森. 基于改进iForest的学生异常行为检测及分析系统研究[D]. 南京: 南京信息工程大学, 2019. ZHU Yansen. Research on abnormal behavior detection and analysis system of students based on improved iforest[D]. Nanjing: Nanjing University of Information Science and Technology, 2019.
[30] 林少武, 冯春苗, 梁茵, 等. 初始沙盘特征在沙盘心理评估中的应用与发展[J]. 中国健康心理学杂志, 2019, 27(5):788-792. LIN Shaowu, FENG Chunmiao, LIANG Yin, et al. Application and development of initial sand table characteristics in psychological evaluation of sand table[J]. Chinese Journal of Health Psychology, 2019, 27(5):788-792.
[31] LIU F T, TING K M, ZHOU Z H. Isolation forest[C] //2008 Eighth IEEE International Conference on Data Mining. Pisa, Italy: IEEE Xplore, 2008: 413-422.
[32] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: Identifying density-based local outliers[C] //Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York, USA: Association for Computing Machinery, 2000: 93-104.
[33] WANG X, WANG X L, MA Y, et al. A fast MST-inspired kNN-based outlier detection method[J]. Information Systems, 2015, 48: 89-112.
[34] DUAN L, XU L, LIU Y, et al. Cluster-based outlier detection[J]. Annals of Operations Research, 2009, 168: 151-168.
[35] DAVIES D L, BOULDIN D W. A cluster separation measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979(2): 224-227.
[36] ZHAO Y, NASRULLAH Z, HRYNIEWICKI M K, et al. LSCP: Locally selective combination in parallel outlier ensembles[C] //Proceedings of the 2019 SIAM International Conference on Data Mining. Alberta, Canda: SIAM International Conference on Data-BMining, 2019: 585-593.
[1] 常新功,苏敏惠,周志刚. 基于进化集成的图神经网络解释方法[J]. 山东大学学报 (工学版), 2024, 54(4): 1-12.
[2] 岳仁峰,张嘉琦,刘勇,范学忠,李琮琮,孔令鑫. 基于颜色和纹理特征的立体车库锈蚀检测技术[J]. 山东大学学报 (工学版), 2024, 54(3): 64-69.
[3] 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法[J]. 山东大学学报 (工学版), 2024, 54(3): 55-63.
[4] 陈成,董永权,贾瑞,刘源. 基于交互序列特征相关性的可解释知识追踪[J]. 山东大学学报 (工学版), 2024, 54(1): 100-108.
[5] 李鸿钊,张庆松,刘人太,陈新,辛勤,石乐乐. 浅埋地铁车站施工期地表变形风险预警[J]. 山东大学学报 (工学版), 2023, 53(6): 82-91.
[6] 卞小曼,王小琴,蓝如师,刘振丙,罗笑南. 基于相似性保持和判别性分析的快速视频哈希算法[J]. 山东大学学报 (工学版), 2023, 53(6): 63-69.
[7] 袁高腾,周晓峰,郭宏乐. 基于特征选择算法的ECG信号分类[J]. 山东大学学报 (工学版), 2022, 52(4): 38-44.
[8] 聂秀山,马玉玲,乔慧妍,郭杰,崔超然,于志云,刘兴波,尹义龙. 任务粒度视角下的学生成绩预测研究综述[J]. 山东大学学报 (工学版), 2022, 52(2): 1-14.
[9] 孙鸿昌,周风余,单明珠,翟文文,牛兰强. 基于模式划分的空调能耗混合填补方法[J]. 山东大学学报 (工学版), 2022, 52(1): 9-18.
[10] 袁高腾,刘毅慧,黄伟,胡兵. 基于Gabor特征的乳腺肿瘤MR图像分类识别模型[J]. 山东大学学报 (工学版), 2020, 50(3): 15-23.
[11] 高铭壑,张莹,张蓉蓉,黄子豪,黄琳焱,李繁菀,张昕,王彦浩. 基于预测数据特征的空气质量预测方法[J]. 山东大学学报 (工学版), 2020, 50(2): 91-99.
[12] 张大鹏,刘雅军,张伟,沈芬,杨建盛. 基于异质集成学习的虚假评论检测[J]. 山东大学学报 (工学版), 2020, 50(2): 1-9.
[13] 刘玉田, 孙润稼, 王洪涛, 顾雪平. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报 (工学版), 2019, 49(5): 1-8.
[14] 李童,马然,郑鸿鹤,安平,胡翔宇. 基于视频统计特征的差错敏感度模型[J]. 山东大学学报 (工学版), 2019, 49(2): 116-121.
[15] 邹启杰,李昊宇,张汝波,裴腾达,刘艳. 自主驾驶的人机交互控制[J]. 山东大学学报 (工学版), 2019, 49(2): 23-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 毕侠飞,孙同景,杨福刚,张巍 . 非接触式并行连铸方坯在线定尺切割系统研究[J]. 山东大学学报(工学版), 2008, 38(1): 52 -55 .
[2] 杜烨,汤红卫,王卫东 . 边界奇异权法在复合型裂纹计算中的应用[J]. 山东大学学报(工学版), 2008, 38(3): 123 -126 .
[3] 夏 斌,张连俊 . DS-CDMA UWB系统中基于能量比较的TOA估计算法[J]. 山东大学学报(工学版), 2007, 37(1): 70 -73 .
[4] 员冬玲,邓建新,丁泽良,段振兴 . 梯度陶瓷水煤浆喷嘴的残余热应力有限元分析[J]. 山东大学学报(工学版), 2008, 38(2): 18 -22 .
[5] 王汝贵,蔡敢为 . 两自由度可控平面连杆机构机电耦合系统的超谐波共振分析[J]. 山东大学学报(工学版), 2008, 38(3): 58 -63 .
[6] 刘飞宏,王建明*,余丰,张刚. 基于SPH耦合有限元法的喷丸残余应力场数值模拟[J]. 山东大学学报(工学版), 2010, 40(6): 67 -71 .
[7] 刘晓平 王洪运 张鹏 秦绪平 张孟力. 三元共聚阳离子聚丙烯酰胺的合成及性能评价[J]. 山东大学学报(工学版), 2009, 39(3): 71 -76 .
[8] 邓斌,王江 . 基于混沌同步与自适应控制的神经元模型参数估计[J]. 山东大学学报(工学版), 2007, 37(5): 19 -23 .
[9] 王进野,姚瑞英,张纪良,王其军 . 一类模糊双曲正切模型稳定性控制[J]. 山东大学学报(工学版), 2007, 37(2): 63 -66 .
[10] 韩忠明, 吴杨, 谭旭升, 刘雯, 杨伟杰. 社会网络结构洞节点度量指标比较与分析[J]. 山东大学学报(工学版), 2015, 45(1): 1 -8 .