您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (4): 86-94.doi: 10.6040/j.issn.1672-3961.0.2023.287

• 机器学习与数据挖掘 • 上一篇    下一篇

基于自适应线性模型的环境数据预测算法

王凤娟1,王语睿2,卫兰3,4*,范存群3,4,徐晓斌2   

  1. 1. 山东省东明县气象局综合气象业务科, 山东 菏泽 274500;2. 北京工业大学计算机学院, 北京 100124;3. 中国气象局中国遥感卫星辐射测量和定标重点开放实验室/国家卫星气象中心(国家空间天气监测预警中心), 北京 100081;4. 许健民气象卫星创新中心, 北京 100081
  • 发布日期:2024-08-20
  • 作者简介:王凤娟(1973— ),女,山东东明人,工程师,主要研究方向为气象数据挖掘及气象数据处理. E-mail: dmxwangfengjuan@163.com. *通信作者简介:卫兰(1980— ),女,江苏姜堰人,高级工程师,主要研究方向为气象数据挖掘及卫星数据处理. E-mail: weilan@cma.cn
  • 基金资助:
    国家重点研发计划资助项目(2021YFB3901000,2021YFB3901005);风云星应用先行计划资助项目(FY-APP-20210501)

Environmental data prediction algorithm based on adaptive linear model

WANG Fengjuan1, WANG Yurui2, WEI Lan3,4*, FAN Cunqun3,4, XU Xiaobin2   

  1. 1. Comprehensive Meteorological Operation Section, Dongming County Meteorological Bureau of Shandong Province, Heze 274500, Shandong, China;
    2. College of Computer Science, Beijing University of Technology, Beijing 100124, China;
    3. Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological Center(National Center for Space Weather), China Meteorological Administration, Beijing 100081, China;
    4. Innovation Center for FengYun Meteorological Satellite(FYSIC), Beijing 100081, China
  • Published:2024-08-20

摘要: 针对环境大数据在智慧城市应用中的实时性和准确性问题,提出一种基于自适应线性模型的环境数据预测算法。根据气象数据的实时变化情况对模型进行训练,自适应调整训练窗口大小,并在训练态与预测态之间动态实时切换,使模型具有较强的适应环境的能力。该算法具有较低的时延和较小的计算开销,可以在传感器节点上直接部署,满足数据预测的实时性需求。在真实环境数据集的基础上构建仿真试验,相比固定窗口模型,该算法数据预测误差降低17.4%以上,环境数据采集能耗降低80%以上,平均时延降低超过50%;相比已有的机器学习算法,训练及预测时间降低37%以上。

关键词: 智慧城市, 环境大数据, 边缘服务, 线性预测, 节能减排

中图分类号: 

  • TP3
[1] EI M O, RACHID S, ABDELLAH C, et al. 6G enabled smart environments and sustainable cities: an intelligent big data architecture[C] //Proceedings of the 2022 IEEE 95th Vehicular Technology Conference(VTC2022-Spring). Helsinki, Finland: IEEE, 2022: 1-5.
[2] SHIDROKH G, MOHAMMAD H A, SEYED A S, et al. An IoT-based prediction technique for efficient energy consumption in buildings[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(4): 2076-2088.
[3] LI J Z, LI G H, GAO H. Novel ε -approximation to data streams in sensor networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2015, 26(6): 1654-1667.
[4] HUNG V, JEUNG. H, ABERER K. Anevaluation of model-based approaches to sensor data compression[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(11): 2434-2447.
[5] ZISIS I P, TIAN Y L. Prediction ofsea ice motion with convolutional long short-term memory networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6865-6876.
[6] WANG W N, LIU W Q, CHEN H. Information granules-based BP neural network for long-term prediction of time series[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(10): 2975-2987.
[7] DYLAN P, WANG N, SHEN S H. Energy demand prediction with optimized clustering-based federated learning[C] //Proceedings of the 2021 IEEE Global Communications Conference(GLOBECOM). Madrid, Spain: IEEE, 2021: 1-6.
[8] JIANG Y S, NIU S T, ZHANG K, et al. Spatial-temporal graph data mining for IoT-enabled air mobility prediction[J]. IEEE Internet of Things Journal, 2022, 9(12): 9232-9240.
[9] YAN B W, WANG G J, YU J G, et al. Spatial-temporal Chebyshev graph neural network for traffic flow prediction in IoT-based ITS[J]. IEEE Internet of Things Journal, 2022, 9(12): 9266-9279.
[10] VINIT K, MOHAMMADREZA B, NICHOLE M, et al. DeepTrack: lightweight deep learning for vehicle trajectory prediction in highways[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18927-18936.
[11] ZENG Y Y, ZHOU S J, XIANG K. Online-offline interactive urban crowd flow prediction toward IoT-based smart city[J]. IEEE Transactions on Services Computing, 2022, 15(6): 3417-3428.
[12] 万晨, 李文中, 丁望祥, 等. 一种基于自演化预训练的多变量时间序列预测算法[J]. 计算机学报, 2022, 45(3): 513-525. WAN Chen, LI Wenzhong, DING Wangxiang, et al. A multivariate time series forecasting algorithm based on self-evolution and pretraining[J]. Chinese Journal of Computers, 2022, 45(3): 513-525.
[13] LI Z, KOVACHKI N, AZIZZADENSHELI K, et al.Fourier neural operator for parametric partial differential equations[C] //Proceedings of the 9th International Conference on Learning Representations(ICLR). [S.l.] : ICLR, 2021: 1-6.
[14] XU X B, ZHAO H, YAO H P, et al. A blockchain-enabled energy-efficient data collection system for UAV-assisted IoT[J]. IEEE Internet of Things Journal, 2021, 8(4): 2431-2443.
[15] AROOSA H, JOHN V, ARIS L, et al. Toward QoS prediction based on temporal transformers for IoT applications[J]. IEEE Transactions on Network and Service Management, 2022, 19(4): 4010-4027.
[16] 杨鹏史, 丁卉, 陈同, 等. 基于局部加权线性回归的城市公交车排放能耗预测[J]. 中山大学学报(自然科学版), 2019, 58(6): 111-118. YANG Pengshi, DING Hui, CHEN Tong, et al. Estimation of emissions or electricity consumptions of urban buses based on locally weighted linear regression[J]. Acta Scientiarum Naturalium Universitatis SunYatseni, 2019, 58(6): 111-118.
[17] 郭松亮, 闫鹏君, 鄂浩坤. 基于ARIMA模型的北京市全社会用电量短期预测[J]. 北京信息科技大学学报(自然科学版), 2020, 35(5): 93-96. GUO Songliang, YAN Pengjun, E Haokun. Short-term forecast of the total electricity consumption in Beijing based on ARIMA model[J]. Journal of Beijing Information Science & Technology University(Natural Science Edition), 2020, 35(5): 93-96.
[18] 唐继强, 钟鑫伟, 刘健, 等. 基于时间序列季节分类模型的轨道交通客流短期预测[J]. 重庆交通大学学报(自然科学版), 2021, 40(7): 31-38. TANG Jiqiang, ZHONG Xinwei, LIU Jian, et al. Short term forecast of rail transit passenger flow based on time series seasonal classification model[J]. Journal of Chongqing Jiaotong University(Natural Science Edition), 2021, 40(7): 31-38.
[19] 马乐乐, 刘向杰. 非线性快速批次过程高效迭代学习预测函数控制[J]. 自动化学报, 2022, 48(2): 515-530. MA Lele, LIU Xiangjie. A high efficiency iterative learning predictive functional control for nonlinear fast batch processes[J]. Acta Automatica Sinica, 2022, 48(2): 515-530.
[1] 王历,高阳,王巍巍. 预测状态表示综述[J]. 山东大学学报(工学版), 2010, 40(4): 23-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘云,邱晓国 . 内插TOC系数法测定水体中COD研究[J]. 山东大学学报(工学版), 2007, 37(4): 108 -117 .
[2] 黄凌 达庆利. 准时制下再制造逆向供应链成本契约激励分析[J]. 山东大学学报(工学版), 2008, 38(6): 105 -111 .
[3] 李晓娟,韩森,贾志清,张丽娟. 基于弯曲试验的沥青混合料低温抗裂性研究[J]. 山东大学学报(工学版), 2010, 40(6): 88 -93 .
[4] 张健,吴耀华,刘沛,王艳艳 . 公路快速货运复合轴辐式网络规划分析[J]. 山东大学学报(工学版), 2008, 38(5): 6 -9 .
[5] 刘延俊1, 郑波2,孙兴旺1. 漂浮式海浪发电装置主浮体结构的有限元分析[J]. 山东大学学报(工学版), 2012, 42(4): 98 -102 .
[6] 李富荣1,2, 何山1, 王志华2. 地震作用下大型桥梁群桩基础动水压力效应分析[J]. 山东大学学报(工学版), 2010, 40(4): 102 -107 .
[7] 马其华 王宜泰. 高密度电阻率法在煤矿界外巨空水探测上的应用[J]. 山东大学学报(工学版), 2009, 39(4): 107 -111 .
[8] 吴俊飞,王威强,胡德栋,崔玉良, . 平阴尿塔塔体爆炸能量分析与计算[J]. 山东大学学报(工学版), 2008, 38(4): 80 -83 .
[9] 田伟,乔谊正,马志强 . 基于DWT的二次特征提取脱机中文签名鉴定[J]. 山东大学学报(工学版), 2007, 37(3): 55 -59 .
[10] 张丽梅1,2 ,乔立山1,2 ,陈松灿1 . 基于张量模式的特征提取及分类器设计综述[J]. 山东大学学报(工学版), 2009, 39(1): 6 -14 .