您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (6): 63-69.doi: 10.6040/j.issn.1672-3961.0.2022.178

• 机器学习与数据挖掘 • 上一篇    

基于相似性保持和判别性分析的快速视频哈希算法

卞小曼,王小琴,蓝如师*,刘振丙,罗笑南   

  1. 桂林电子科技大学计算机与信息安全学院, 广西 桂林 541004
  • 发布日期:2023-12-19
  • 作者简介:卞小曼(1995— ),女,江苏泰州人,硕士研究生,主要研究方向为机器学习和视频哈希. E-mail:bianstudy@163.com. *通信作者简介:蓝如师(1986— ),男,广西河池人,副教授,博士生导师,博士,主要研究方向为图像处理和模式分类. E-mail:rslan2016@163.com
  • 基金资助:
    国家自然科学基金资助项目(62172120,61772149,61936002,6202780103);广西科技计划资助项目(2019GXNSFFA245014,AD18281079,AA18118039,AD18216004);广西图像图形与智能处理重点实验室开发课题(GIIP2001)

A fast video hashing algorithm based on similarity preservation and discrimination analysis

BIAN Xiaoman, WANG Xiaoqin, LAN Rushi*, LIU Zhenbing, LUO Xiaonan   

  1. School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
  • Published:2023-12-19

摘要: 针对当前视频哈希算法检索时间长、准确率低的问题,提出一种基于相似性保持和判别性分析的快速视频哈希算法。通过视频的标签信息直接得到相似性矩阵,减少视频关键帧之间相似度的计算时间。采用根据标签信息定义的码本矩阵,使同一类别的视频生成相同的哈希码。在算法优化过程中,使用迭代优化找到参数的封闭解,学习得到视频哈希函数。本研究使得相似性矩阵和码本矩阵共同作用,不仅获得了较高的准确率,还极大提高了检索效率。试验结果表明,在两个公开视频数据集HMDB51和UCF101上,在数据集设置相同的情况下,该算法和6个常用的哈希算法相比,检索的时间和空间复杂度都明显优于其他算法。

关键词: 快速学习, 相似性保持, 判别性分析, 视频检索, 机器学习

中图分类号: 

  • TP181
[1] CHEN Zhixiang, LU Jiwen, FENG Jianjiang, et al. Nonlinear structural hashing for scalable video search[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 28(6):1421-1433.
[2] HAO Yanbin, MU Tingting, GOULERMAS J Y, et al. Unsupervised t-distributed video hashing and its deep hashing extension[J]. IEEE Transactions on Image Processing, 2017, 26(11):5531-5544.
[3] YU Xiao, NIE Xiushan, MA Linyuan, et al. Robust video hashing algorithm based on short-term spatial variations[J]. Computer Science, 2018, 45(2):84-89.
[4] WANG Yingxin, NIE Xiushan, SHI Yang, et al. Attention-based video hashing for large-scale video retrieval[J]. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13(3):491-502.
[5] GONG Yunchao, LAZEBNIK S, GORDO A, et al. Iterative quantization:a procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(12):2916-2929.
[6] WEISS Y, TORRALBA A, FERGUS R. Spectral hashing[C] //Proceedings of the 22th Annual Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates, 2008:1753-1760.
[7] LUO Xin, NIE Liqiang, HE Xiangnan, et al. Fast scalable supervised hashing[C] //Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. Ann Arbor, USA: ACM, 2018:735-744.
[8] YE Guangnan, LIU Dong, WANG Jun, et al. Large-scale video hashing via structure learning[C] //Proceedings of the 2013 IEEE/CVF International Conference on Computer Vision. Sydney, Australia: IEEE, 2013:2272-2279.
[9] BIAN Xiaoman, LAN Rushi, WANG Xiaoqin, et al. Discriminative codebook hashing for supervised video retrieval[J]. Computational Intelligence and Neuroscience, 2021, 2021:5845094.
[10] WU Gengshen, HAN Jungong, GUO Yuchen, et al. Unsupervised deep video hashing via balanced code for large-scale video retrieval[J]. IEEE Transactions on Image Processing, 2018, 28(4):1993-2007.
[11] LI Shuyan, CHEN Zhixiang, LU Jiwen, et al. Neighborhood preserving hashing for scalable video retrieval[C] //Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019:8212-8221.
[12] LI Shuyan, CHEN Zhixiang, LI Xiu, et al. Unsupervised variational video hashing with 1D-CNN-LSTM networks[J]. IEEE Transactions on Multimedia, 2019, 22(6):1542-1554.
[13] SONG Jingkuan, YANG Yi, HUANG Zi, et al. Multiple feature hashing for real-time large scale near-duplicate video retrieval[C] //Proceedings of the 19th ACM International Conference on Multimedia. Scottsdale, USA: ACM, 2011:423-432.
[14] HAO Yanbin, MU Tingting, HONG Richang, et al. Stochastic multiview hashing for large-scale near-duplicate video retrieval[J]. IEEE Transactions on Multimedia, 2016, 19(1):1-14.
[15] NIE Xiushan, JING Weizhen, CUI Chaoran, et al. Joint multi-view hashing for large-scale near-duplicate video retrieval [J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(10):1951-1965.
[16] SONG Jingkuan, ZHANG Hanwang, LI Xiangpeng, et al. Self-supervised video hashing with hierarchical binary auto-encoder[J]. IEEE Transactions on Image Proce-ssing, 2018, 27(7):3210-3221.
[17] YUAN Li, WANG Tao, ZHANG Xiaopeng, et al. Central similarity quantization for efficient image and video retrieval[C] //Proceedings of the 33rd IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2020:3083-3092.
[18] WISHART D S, DAN T, KNOX C, et al. HMDB: the human metabolome database[J]. Nucleic Acids Research, 2007, 35(Suppl.1):521-526.
[19] SOOMRO K, ZAMIR A R, SHAH M. UCF101: a dataset of 101 human actions classes from videos in the wild[EB/OL].(2012-12-03)[2022-03-28]. https://doi.org/10.48550/arXiv.1212.0402.
[20] LIU Wei, WANG Jun, JI Rongrong, et al. Supervised hashing with kernels[C] //Proceedings of the 25th IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2012:2074-2081.
[1] 袁高腾,周晓峰,郭宏乐. 基于特征选择算法的ECG信号分类[J]. 山东大学学报 (工学版), 2022, 52(4): 38-44.
[2] 聂秀山,马玉玲,乔慧妍,郭杰,崔超然,于志云,刘兴波,尹义龙. 任务粒度视角下的学生成绩预测研究综述[J]. 山东大学学报 (工学版), 2022, 52(2): 1-14.
[3] 孙鸿昌,周风余,单明珠,翟文文,牛兰强. 基于模式划分的空调能耗混合填补方法[J]. 山东大学学报 (工学版), 2022, 52(1): 9-18.
[4] 袁高腾,刘毅慧,黄伟,胡兵. 基于Gabor特征的乳腺肿瘤MR图像分类识别模型[J]. 山东大学学报 (工学版), 2020, 50(3): 15-23.
[5] 高铭壑,张莹,张蓉蓉,黄子豪,黄琳焱,李繁菀,张昕,王彦浩. 基于预测数据特征的空气质量预测方法[J]. 山东大学学报 (工学版), 2020, 50(2): 91-99.
[6] 张大鹏,刘雅军,张伟,沈芬,杨建盛. 基于异质集成学习的虚假评论检测[J]. 山东大学学报 (工学版), 2020, 50(2): 1-9.
[7] 刘玉田, 孙润稼, 王洪涛, 顾雪平. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报 (工学版), 2019, 49(5): 1-8.
[8] 李童,马然,郑鸿鹤,安平,胡翔宇. 基于视频统计特征的差错敏感度模型[J]. 山东大学学报 (工学版), 2019, 49(2): 116-121.
[9] 邹启杰,李昊宇,张汝波,裴腾达,刘艳. 自主驾驶的人机交互控制[J]. 山东大学学报 (工学版), 2019, 49(2): 23-33.
[10] 张冕,黄颖,梅海艺,郭毓. 基于Kinect的配电作业机器人智能人机交互方法[J]. 山东大学学报 (工学版), 2018, 48(5): 103-108.
[11] 刘洋,刘博,王峰. 基于Parameter Server框架的大数据挖掘优化算法[J]. 山东大学学报(工学版), 2017, 47(4): 1-6.
[12] 魏波,张文生,李元香,夏学文,吕敬钦. 一种选择特征的稀疏在线学习算法[J]. 山东大学学报(工学版), 2017, 47(1): 22-27.
[13] 周旺,张晨麟,吴建鑫. 一种基于Hartigan-Wong和Lloyd的定性平衡聚类算法[J]. 山东大学学报(工学版), 2016, 46(5): 37-44.
[14] 孟令恒,丁世飞. 基于单静态图像的深度感知模型[J]. 山东大学学报(工学版), 2016, 46(3): 37-43.
[15] 刘杰, 杨鹏, 吕文生, 刘阿古达木, 刘俊秀. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015, 45(6): 76-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!