您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (2): 11-22.doi: 10.6040/j.issn.1672-3961.0.2022.161

• • 上一篇    下一篇

融合Jaya高斯变异的自适应乌鸦搜索算法

黄华娟1,程前2,韦修喜1*,于楚楚2   

  1. 1.广西民族大学人工智能学院, 广西 南宁 530006;2.广西民族大学电子信息学院, 广西 南宁 530006
  • 收稿日期:2022-04-21 出版日期:2023-04-22 发布日期:2023-04-21
  • 作者简介:黄华娟(1984— ),女,广西崇左人,副教授,博士,主要研究方向为机器学习和数据挖掘. E-mail:hhj-025@163.com. *通信作者简介:韦修喜(1980— ),男,广西百色人,副教授,主要研究方向为计算智能和机器学习. E-mail:weixiuxi@163.com
  • 基金资助:
    国家自然科学基金项目(62266007,61662005);广西自然科学基金项目(2021GXNSFAA220068,2018GXNSFAA294068)

Adaptive crow search algorithm with Jaya algorithm and Gaussian mutation

HUANG Huajuan1, CHENG Qian2, WEI Xiuxi1*, YU Chuchu2   

  1. 1. College of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, Guangxi, China;
    2. College of Electronic Information, Guangxi Minzu University, Nanning 530006, Guangxi, China
  • Received:2022-04-21 Online:2023-04-22 Published:2023-04-21

摘要: 针对标准乌鸦搜索算法存在收敛速度慢、寻优精度低、位置更新具有盲目性的不足,提出一种融合Jaya高斯变异的自适应乌鸦搜索算法(adaptive crow search algorithm with Jaya algorithm and Gaussian mutation, GMJCSA)。通过高斯变异优化全局最优个体和自适应步长的合理变化,提高算法的收敛能力和寻优精度。在引导者发现自己被跟随的情况下引入Jaya算法,克服位置更新具有盲目性的不足。将GMJCSA用于16个基准函数优化和减速器设计问题,与其他智能算法进行试验对比,GMJCSA能取得更好的解。试验结果表明,GMJCSA对于函数优化和减速器设计问题能够较好地寻优求解,总体性能良好。

关键词: 乌鸦搜索算法, 高斯变异, Jaya算法, 工程优化, 函数优化

中图分类号: 

  • TP391
[1] ASKARZADEH A. A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm[J]. Computers and Structures, 2016, 169:1-12.
[2] SURENDAR P. Diagnosis of lung cancer using hybrid deep neural network with adaptive sine cosine crow search algorithm[J]. Journal of Computational Science, 2021, 53: 101374.
[3] UPADHYAY P, CHHABRA J K. Kapur's entropy based optimal multilevel image segmentation using crow search algorithm[J]. Applied Soft Computing, 2020, 97: 105522.
[4] RAMACHANDRAN M, MIRJALILI S, RAMALINGAM M M, et al. A ranking-based fuzzy adaptive hybrid crow search algorithm for combined heat and power economic dispatch[J]. Expert Systems with Applications, 2022, 197: 116625.
[5] ABDULMUNIM A N T, YAHYA A Z, OMAR S Q. Feature selection based on a crow search algorithm for big data classification[J]. Chemometrics and Intelligent Laboratory Systems, 2021, 212:104288.
[6] SAMIEIYAN B, MOHAMMADINASAB P, MOLLAEI M A, et al. Novel optimized crow search algorithm for feature selection[J]. Expert Systems with Applications, 2022, 204:117486.
[7] MAKHDOOMI S, ASKARZADEH A. Optimizing operation of a photovoltaic/diesel generator hybrid energy system with pumped hydro storage by a modified crow search algorithm[J]. Journal of Energy Storage, 2020, 27:101040.
[8] BANADKOOKI F B, ADAMOWSKI J, SINGH V P, et al. Crow algorithm for irrigation management: a case study[J]. Water Resources Management, 2020, 34(3):1021-1045.
[9] YOUSIF M, SALIM A, JUMMAR W K. A robotic path planning by using crow swarm optimizationalgorithm[J]. International Journal of Mathematical Sciences and Computing(IJMSC), 2021, 7(1):20-25.
[10] 肖子雅, 刘升, 韩斐斐,等.正弦余弦指引的乌鸦搜索算法研究[J].计算机工程与应用,2019,55(21):52-59. XIAO Ziya, LIU Sheng, HAN Feifei, et al. Crow search algorithm based on directing of sine cosine algorithm[J]. Computer Engineering and Applications, 2019, 55(21):52-59.
[11] MOHAMMADI F, ABDI H. A modified crow search algorithm(MCSA)for solving economic load dispatch problem[J]. Applied Soft Computing Journal, 2018, 71:51-65.
[12] RIZK M R, HASSANIEN A E, BHATTACHA-RYYA S. Chaotic crow search algorithm for fractional optimization problems[J]. Applied Soft Computing, 2018, 71:1161-1175.
[13] 刘雪静,贺毅朝,吴聪聪,等.求解0-1背包问题的混沌二进制乌鸦算法[J].计算机工程与应用,2018,54(10):173-179. LIU Xuejing, HE Yichao, WU Congcong, et al. Chaotic binary crow search algorithm for 0-1 knapsack problem[J]. Computer Engineering and Applications, 2018, 54(10): 173-179.
[14] 唐菁敏,郑锦文,曲文博.基于改进自适应乌鸦搜索算法的无源定位[J].重庆邮电大学学报(自然科学版),2021,33(3):372-377. TANG Jingmin, ZHENG Jinwen, QU Wenbo. Improved adaptive crow search algorithm based on passive location[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2021, 33(3):372-377.
[15] HAN X, XU Q, YUE L, et al. An improved crow search algorithm based on spiral search mechanism for solving numerical and engineering optimization problems[J]. IEEE Access, 2020, 8: 92363-92382.
[16] RAO R. Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems[J]. International Journal of Industrial Engineering Computations, 2016, 7(1): 19-34.
[17] KENNEDY J, EBERHART R. Particle swarm optimization[C] //Proceedings of ICNN'95-International Conference on Neural Networks. Perth, WA, Australia: IEEE, 1995, 4: 1942-1948.
[18] MIRJALILI S, LEWIS A. Thewhale optimization algorithm[J]. Advances in Engineering Software, 2016, 95:51-67.
[19] 辛梓芸,张达敏,陈忠云,等.多段扰动的共享型乌鸦算法[J].计算机工程与应用,2020, 56(2):55-61. XIN Ziyun, ZHANG Damin, CHEN Zhongyun, et al. Shared crow algorithm using multi-segment perturbation[J]. Computer Engineering and Applications, 2020, 56(2):55-61.
[20] DERRAC J, GARCIA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm & Evolutionary Computation, 2011, 1(1): 3-18.
[21] WILCOXON F. Probability tables for individual comparisons by ranking methods[J]. Biometrics, 1947, 3(3): 119-122.
[22] MENG X, LIU Y, GAO X, et al. A new bio-inspired algorithm: chicken swarm optimization[C] //International Conference in Swarm Intelligence. Cham, Switzerland: Springer, 2014: 86-94.
[23] REYNOLDS R, ALI M. Embedding a social fabric component into cultural algorithms toolkit for an enhanced knowledge-driven engineering optimization[J]. International Journal of Intelligent Computing and Cybernetics, 2008, 1(4): 563-597.
[24] GANDOMI A H, YANG X S, ALAVI A H. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems[J]. Engineering with Computers, 2013, 29(1): 17-35.
[25] MEAURA-MONTES E, COELLO C A, LANDA-BECERRA R. Engineering optimization using simple evolutionary algorithm[C] // Proceedings 15th IEEE International Conference on Tools with Artificial Intelligence. Sacramento, CA, USA: IEEE, 2003: 149-156.
[1] 王启明, 李战国, 樊爱宛. 基于博弈论的量子蚁群算法[J]. 山东大学学报(工学版), 2015, 45(2): 33-36.
[2] 张潇丹,赵力,邹采荣*. 一种改进的混合蛙跳算法求解有约束优化问题[J]. 山东大学学报(工学版), 2013, 43(1): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 欣,李术才,李树忱 . 考虑天然渗流场影响的地应力场反演回归分析及应用[J]. 山东大学学报(工学版), 2008, 38(4): 57 -62 .
[2] 施来顺,董岩岩,李彦彦,李文静 . 二氧化氯催化氧化处理铬黑T模拟废水的实验[J]. 山东大学学报(工学版), 2007, 37(5): 113 -117 .
[3] 牛林 赵建国 李可军. 1000kV特高压交流输电线路工频磁场分析[J]. 山东大学学报(工学版), 2010, 40(1): 154 -158 .
[4] 李文义,许士国,王兴菊, . 河流水量组成分析与计算方法研究[J]. 山东大学学报(工学版), 2006, 36(2): 71 -74 .
[5] 冯现大 李树忱 徐帮树. 海底隧道涌水量影响因素的数值模拟研究[J]. 山东大学学报(工学版), 2009, 39(4): 21 -24 .
[6] 王虹入1,王中秋1, 3*, 张倩2,李剑峰3, 孙杰3. 切削法构建铝合金Al7050-T7451材料流动应力本构模型[J]. 山东大学学报(工学版), 2012, 42(1): 115 -120 .
[7] 张道强. 知识保持的嵌入方法[J]. 山东大学学报(工学版), 2010, 40(2): 1 -10 .
[8] 冯治宇 . 褐煤基吸附催化剂脱硫脱氮的研究[J]. 山东大学学报(工学版), 2007, 37(1): 107 -110 .
[9] 张训华1,业宁2,王厚立3. 基于Harris角点的木材CT图像配准[J]. 山东大学学报(工学版), 2010, 40(5): 101 -104 .
[10] 于江德1,赵红丹1,郑勃举1,余正涛2. 基于中文人名用字特征的性别判定方法[J]. 山东大学学报(工学版), 2014, 44(1): 13 -18 .