您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (1): 1-10.doi: 10.6040/j.issn.1672-3961.0.2022.137

• 交通工程——道路材料专题 •    下一篇

基于有机-无机改性的赤泥沥青混合料综合性能

张吉哲1(),刚子璇1,毕玉峰2,岳红亚2,徐润2,丁婷婷2,齐仕杰2   

  1. 1. 山东大学齐鲁交通学院,山东 济南 250002
    2. 山东省交通规划设计院集团有限公司,山东 济南 250101
  • 收稿日期:2022-04-06 出版日期:2023-02-20 发布日期:2023-02-13
  • 作者简介:张吉哲(1987—),男,山东济南人,副研究员,博士,主要研究方向为沥青混合料细观力学、新型路面材料、废旧路面材料再生利用等。E-mail: jizhe.zhang@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51908331)

Comprehensive properties of red mud asphalt mixture based on organic and inorganic modification

Jizhe ZHANG1(),Zixuan GANG1,Yufeng BI2,Hongya YUE2,Run XU2,Tingting DING2,Shijie QI2   

  1. 1. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China
    2. Shandong Provincial Communications Planning and Design Institute Co., Ltd., Jinan 250101, Shandong, China
  • Received:2022-04-06 Online:2023-02-20 Published:2023-02-13

摘要:

聚焦赤泥的资源化利用与筑路材料紧缺问题,提出采用赤泥替代石灰岩矿粉制备沥青混合料。针对赤泥-沥青界面遇水强度衰减问题,提出无机粉体共混(水泥、消石灰)和有机偶联剂表面修饰(硅烷偶联剂KH-550、KH-560)的改性工艺,并研究改性前后的赤泥对沥青混合料性能的影响规律。通过动稳定度试验、马歇尔试验、汉堡车辙试验、动态模量试验和两点弯曲试验对改性前后的赤泥沥青混合料进行系统评价,发现普通赤泥可以提高沥青混合料的高温稳定性,但是对水稳定性、低温抗裂性与疲劳性能有不利影响。通过对赤泥改性处理,赤泥沥青混合料的高低温性能、水稳定性与长期耐久性均得到不同程度提高,而采用硅烷偶联剂表面修饰改性效果更好。证实了使用赤泥进行沥青混合料生产的可行性,为赤泥的资源化利用开拓了方向。

关键词: 赤泥, 沥青混合料, 改性, 水稳定性, 疲劳

Abstract:

Focused on the issues of red mud utilization and road building material shortage, this paper put forward the research idea of utilizing red mud as the succedaneum of limestone powder to prepare asphalt mixture. Modification methods which included inorganic powder blending (cement, slaked lime) and organic coupling agent surface modification (silane coupling agent KH-550, KH-560) were proposed with the view of solving moisture sensitivity of red mud-bitumen interface, with the influence of modification means on performance of red mud asphalt mixture were also studied. The performance of red mud asphalt mixture before and after modification were systematically evaluated by using dynamic stability test, Marshall test, Hamburg rut test, dynamic modulus test and two-point bending fatigue test. It was found that the red mud could improve the high-temperature performance of asphalt mixture, but had negative effects on the moisture stability, cracking resistance and fatigue life. After red mud modification, the high and low temperature performance, moisture stability and long-term durability of red mud asphalt mixture were improved to varying degrees, and the surface modification effect of silane coupling agent performed better. It was proved the feasibility of using red mud to produce asphalt mixture and provided a new approach for red mud utilization.

Key words: red mud, asphalt mixture, modification, moisture stability, fatigue

中图分类号: 

  • U414

表1

70#基质沥青基本性能指标"

指标 软化点/℃ 针入度(25 ℃)/(0.1 mm) 延度(15 ℃)/cm
结果 46.2 68.3 >150
规范要求 ≥46.0 60.0~80.0 ≥100

表2

不同粉体材料的比表面积"

粉体种类 比表面积/(m2·g-1)
矿粉 0.502
赤泥 22.265
消石灰 9.693
水泥 1.538

表3

AC-20沥青混合料配合比"

矿料组成 筛孔尺寸/mm 级配组成/%
集料 15~20 24
10~15 20
5~10 21
3~5 11
0~3 19
矿粉 5

表4

不同粉体的密度"

填料 密度/(g·cm-3)
矿粉 2.775
赤泥 2.613
消石灰 2.319
水泥 3.210
KH-550改性赤泥 2.587
KH-560改性赤泥 2.598

表5

沥青混合料填料组成与样品编号"

样品编号 填料组成
AC-LP 石灰岩矿粉
AC-RM 赤泥
AC-RH m(赤泥)∶m(消石灰)=9∶1
AC-RP m(赤泥)∶m(水泥)=9∶1
AC-R550 m(赤泥)∶m(硅烷偶联剂550)=100∶1
AC-R560 m(赤泥)∶m(硅烷偶联剂560)=100∶1

表6

沥青混合料动稳定度"

混合料类型 动稳定度/(次·mm-1)
AC-LP 880
AC-RM 1086
AC-RH 1255
AC-RP 1194
AC-R550 1270
AC-R560 1250

表7

沥青混合料最大弯拉应变"

混合料类型 弯拉应变/10-3
AC-LP 4.106
AC-RM 3.869
AC-RH 4.583
AC-RP 4.438
AC-R550 4.649
AC-R560 4.598

表8

沥青混合料浸水马歇尔残留稳定度"

混合料类型 残留稳定度/%
AC-LP 87.8
AC-RM 67.1
AC-RH 86.3
AC-RP 84.9
AC-R550 91.8
AC-R560 86.7

图1

50 ℃干燥条件下沥青混合料汉堡车辙深度"

图2

50 ℃水浴条件下沥青混合料汉堡车辙深度"

图3

不同温度下沥青混合料的动态模量"

图4

不同温度下沥青混合料的相位角"

表9

10 Hz不同温度下动态模量和相位角"

混合料类型 5 ℃ 20 ℃ 35 ℃ 50 ℃
动态模量/ MPa 相位角/ (°) 动态模量/ MPa 相位角/ (°) 动态模量/ MPa 相位角/ (°) 动态模量/ MPa 相位角/ (°)
AC-LP 20 496 11.62 8722 25.83 3097 36.63 708.6 38.32
AC-RM 17 637 10.48 9700 25.67 3007 36.03 724.0 36.24
AC-RH 20 644 10.09 10 160 25.47 3149 35.90 732.5 35.89
AC-RP 21 910 9.66 10 842 23.97 3353 36.87 787.5 37.77
AC-R550 21 918 11.78 10 470 25.91 3216 36.89 798.0 38.41
AC-R560 20 674 12.01 10 130 25.99 3197 36.97 793.0 38.19

表10

不同沥青混合料疲劳寿命"

混合料类型 疲劳寿命/次
AC-LP 104 147
AC-RM 45 746
AC-RH 61 548
AC-RP 70 948
AC-R550 94 361
AC-R560 86 732
1 张兰芳. 碱激发矿渣水泥和混凝土[M]. 成都: 西南交通大学出版社, 2018: 36- 37.
ZHANG Lanfang . Alkali activated slag cement and concrete[M]. Chengdu: Southwest Jiaotong University Press, 2018: 36- 37.
2 许智芳, 苏爱琴, 张新峰. 氧化铝赤泥的综合回收及利用现状[J]. 山东冶金, 2010, 32 (3): 8- 12.
doi: 10.16727/j.cnki.issn1004-4620.2010.03.027
XU Zhifang , SU Aiqin , ZHANG Xinfeng . Compre-hensive recovery and utilization status of alumina red mud[J]. Shandong Metallurgy, 2010, 32 (3): 8- 12.
doi: 10.16727/j.cnki.issn1004-4620.2010.03.027
3 李卓智. 道路工程应用拜耳法赤泥的路用性能与强度机理研究[D]. 济南: 山东大学, 2018.
LI Zhuozhi. Research on pavement properties and solidification mechanism of engineering stabilized Bayer red mud[D]. Jinan: Shandong University, 2018.
4 赵广慧. 铝工业固体废物: 赤泥综合治理[J]. 科技信息, 2011, (5): 373- 390.
ZHAO Guanghui . Solid waste from aluminum industry: comprehensive treatment of red mud[J]. Science and Technology Information, 2011, (5): 373- 390.
5 南相莉, 张廷安, 刘燕. 我国赤泥综合利用分析[J]. 过程工程学报, 2010, 10, 264- 270.
NAN Xiangli , ZHANG Tingan , LIU Yan . Analysis of comprehensive utilization of red mud in China[J]. The Chinese Journal of Process Engineering, 2010, 10, 264- 270.
6 叶楠. 拜耳法赤泥活化预处理制备地聚合物及形成强度机理研究[D]. 武汉: 华中科技大学, 2016.
YE Nan. Study on the preparation of geopolymer from pretreated Bayerred mud and mechanism of the strength formation[D]. Wuhan: Huazhong University of Science and Technology, 2016.
7 YAO L Y , GAO W Y , MA X Y , et al. Properties analysis of asphalt binders containing Bayer red mud[J]. Materials, 2020, 13 (5): 1122.
doi: 10.3390/ma13051122
8 FU T, BAO H M, DUAN X X. Molecular simulation study on modification mechanism of red mud modified asphalt[C]//IOP Conference Series: Earth and Environmental Science. Singapore: IOP Publishing, 2017, 100(1): 012005.
9 FU T , WEI J H , BAO H M , et al. Multiscale study on the modification mechanism of red mud modified asphalt[J]. Advances in Materials Science and Engineering, 2020, 2150215.
10 ZHANG H J , LI H , ZHANG Y , et al. Performance enhancement of porous asphalt pavement using red mud as alternative filler[J]. Construction and Building Materials, 2018, 160, 707- 713.
doi: 10.1016/j.conbuildmat.2017.11.105
11 ZHANG H J , LI H , ABDELHADY A , et al. Optimum filler-bitumen ratio of asphalt mortar considering self-healing property[J]. Journal of Materials in Civil Engineering, 2019, 31 (8): 04019166.
doi: 10.1061/(ASCE)MT.1943-5533.0002792
12 ZHANG H J , LI H , ABDELHADY A , et al. Utilization of fine solid waste in asphalt mortar[J]. Journal of Testing and Evaluation, 2019, 47 (6): 4523- 4534.
13 包惠明, 吕总威, 张亦敏. 赤泥改性沥青黏温特性分析[J]. 筑路机械与施工机械化, 2019, 36 (8): 64- 68.
BAO Huiming , LÜ Zongwei , ZHANG Yimin . Analysis of viscosity-temperature properties of red mud modified asphalt[J]. Road Construction Machinery and Construction Mechanization, 2019, 36 (8): 64- 68.
14 包惠明, 傅涛. 赤泥的综合利用现状分析[J]. 矿产综合利用, 2018, (5): 6- 12.
BAO Huiming , FU Tao . Analysis of comprehensive utilization of red mud[J]. Comprehensive Utilization of Minerals, 2018, (5): 6- 12.
15 包惠明, 牟卡莉. 赤泥改性沥青相容性研究[J]. 公路, 2018, 63 (3): 208- 211.
BAO Huiming , MU Kali . Study on compatibility of red mud modified asphalt[J]. Highway, 2018, 63 (3): 208- 211.
16 包惠明, 牟卡莉. 赤泥改性沥青黏度及微观特性[J]. 河南科技大学学报(自然科学版), 2017, 38 (5): 47- 50.
BAO Huiming , MU Kali . Viscosity and microscopic characteristics of red mud modified asphalt[J]. Journal of Henan University of Science and Technology(Natural Science Edition), 2017, 38 (5): 47- 50.
17 LIMA M S S , THIVES L P . Evaluation of red mud as filler in Brazilian dense graded asphalt mixtures[J]. Construction and Building Materials, 2020, 260, 119894.
18 ZHANG J Z , LIU S J , YAO Z Y , et al. Environmental aspects and pavement properties of red mud waste as the replacement of mineral filler in asphalt mixture[J]. Construction and Building Materials, 2018, 180, 605- 613.
19 ZHANG J Z , SUN C J , LI P Z , et al. Experimental study on rheological properties and moisture suscep-tibility of asphalt mastic containing red mud waste as a filler substitute[J]. Construction and Building Materials, 2019, 211, 159- 166.
20 ZHANG J Z , LI P Z , LIANG M , et al. Utilization of red mud as an alternative mineral filler in asphalt mastics to replace natural limestone powder[J]. Construction and Building Materials, 2020, 237, 117821.
21 王民, 朱梦良, 王英俊, 等. 水泥代替矿粉对沥青混合料性能的影响分析[J]. 重庆建筑大学学报, 2007, 29 (6): 121- 125.
WANG Min , ZHU Mengliang , WANG Yingjun , et al. Effect of substitution of mineral powder by cement on asphalt mixture performance[J]. Journal of Chongqing Jianzhu University, 2007, 29 (6): 121- 125.
22 高及阳, 曾梦澜, 孙志林. 改性纳米SiO2对再生沥青胶结料性能的影响[J]. 土木工程学报, 2019, 52 (3): 120- 128.
GAO Jiyang , ZENG Menglan , SUN Zhilin . Effects of nano-SiO2 with modified surface on properties of recycled asphalt binder[J]. Journal of Civil Engineering, 2019, 52 (3): 120- 128.
23 张宝龙, 吴平, 闫新勇, 等. 表面修饰粉煤灰对沥青路用性能的影响[J]. 长安大学学报(自然科学版), 2018, 38 (3): 43- 51.
ZHANG Baolong , WU Ping , YAN Xinyong , et al. Effect of surface-modified fly ash on engineering performance of asphalt[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38 (3): 43- 51.
24 董仕豪, 韩森, 尹媛媛, 等. 基于表面能理论的石灰改性沥青黏附性研究[J]. 重庆交通大学学报(自然科学版), 2021, 40 (3): 89- 97.
DONG Shihao , HAN Sen , YIN Yuanyuan , et al. Adhesion of lime modified asphalt based on surface energy theory[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2021, 40 (3): 89- 97.
25 周志刚. 硅烷偶联剂的水解工艺研究[J]. 石化技术, 2022, 29 (4): 220- 221.
ZHOU Zhigang . Hydrolysis process of silane coupling agent[J]. Petrochemical Technology, 2022, 29 (4): 220- 221.
26 中华人民共和国交通运输部. 公路工程集料试验规程: JTG E42-2005[S]. 北京: 人民交通出版社, 2005.
Traffic transportation department of the people's republic of China. Test Methods of Aggregate for Highway Engineering: JTG E42-2005[S]. Beijing: China Communication Press, 2005.
27 中华人民共和国交通运输部. 公路沥青路面施工技术规范: JTG F40-2004[S]. 北京: 人民交通出版社, 2004.
Traffic transportation department of the people's republic of China. Technical Specifications for Construction of Highway Asphalt Pavements: JTG F40-2004[S]. Beijing: China Communication Press, 2004.
28 中华人民共和国交通运输部. 公路工程沥青及沥青混合料试验规程: JTG E20-2011[S]. 北京: 人民交通出版社, 2011.
Traffic transportation department of the people's republic of China. JTG E20-2011, Standard test methods of bitumen and bituminous mixtures for highway engineering[S]. Beijing: China Communication Press, 2011.
29 AASHTO. Standard method of test for Hamburg wheel-track testing of compacted hot mix asphalt (HMA): T 324-14[S]. Washington DC: American Association of State Highway and Transportation Officials, 2014.
30 CHEN T , LUAN Y C , MA T , et al. Mechanical and microstructural characteristics of different interfaces in cold recycled mixture containing cement and asphalt emulsion[J]. Journal of Cleaner Production, 2020, 258, 120674.
31 ZHANG H J , LI H , ABDEL-HADY A , et al. Optimum filler-bitumen ratio of asphalt mortar considering self-healing property[J]. Journal of Materials in Civil Engineering, 2019, 31 (8): 04019166.
32 中华人民共和国交通运输部. 公路沥青路面设计规范: JTG D50-2017[S]. 北京: 人民交通出版社, 2017.
Traffic transportation department of the people's republic of China. Specifications for Design of Highway Asphalt Pavement: JTG D50-2017[S]. Beijing: China Communication Press, 2017.
[1] 刘澔. 钢渣粉基沥青混合料的性能评价与提升机理[J]. 山东大学学报 (工学版), 2023, 53(1): 32-38.
[2] 姚玉权,黄伯承,宋亮,张建,仰建岗,高杰. 多来源RAP下RHMA材料组成的动态控制策略[J]. 山东大学学报 (工学版), 2022, 52(6): 79-88.
[3] 夏冲,李传贵,冯啸,赵宏魁,张思峰,武剑峰. 水泥粉煤灰-改性水玻璃注浆材料试验研究与应用[J]. 山东大学学报 (工学版), 2022, 52(1): 66-73.
[4] 贾晨号,刘汝涛. 改性超细炭黑诱发氧化应激的毒性效应与机理[J]. 山东大学学报 (工学版), 2019, 49(3): 120-128.
[5] 王忠啸,崔新壮,崔社强,张磊,车华桥,苏俊伟. 咸水区水泥土桩劣化及改性对道路复合地基的影响[J]. 山东大学学报(工学版), 2018, 48(4): 69-77.
[6] 郭德栋,张圣涛,李晋,张龙,张习斌. 厂拌热再生过程中旧矿料颗粒的迁移行为[J]. 山东大学学报(工学版), 2018, 48(2): 46-52.
[7] 张延年, 马建飞. 改性生土坯抗压性能试验研究[J]. 山东大学学报(工学版), 2015, 45(4): 57-63.
[8] 刘立君, 张红兴, 张伟杰, 王刚, 齐萌. 雨刮器压铸模具激光填丝焊修复性能[J]. 山东大学学报(工学版), 2015, 45(3): 73-79.
[9] 朱登元1,2,姚占勇1*,管延华1,庄培芝1. 路面结构平衡的破坏接近度分析[J]. 山东大学学报(工学版), 2012, 42(6): 74-79.
[10] 王瑞,李倩*,岳钦艳*,彭娜娜,高宝玉, 王燕. 小麦秸秆/改性膨润土基高吸水性树脂的制备[J]. 山东大学学报(工学版), 2012, 42(6): 115-120.
[11] 郭银涛1, 2,刘清泉2,刘振清3,王松根3. 基于改性乳化沥青-水泥双胶结料的半柔性再生混合料性能研究[J]. 山东大学学报(工学版), 2012, 42(3): 81-86.
[12] 钟倩倩,岳钦艳*,李倩,李颖,许醒,高宝玉. 改性麦草秸秆对活性艳红的吸附动力学研究[J]. 山东大学学报(工学版), 2011, 41(1): 133-139.
[13] 李晓娟,韩森,贾志清,张丽娟. 基于弯曲试验的沥青混合料低温抗裂性研究[J]. 山东大学学报(工学版), 2010, 40(6): 88-93.
[14] 巴换粉,施来顺*,刘艳璞. 等离子体引发接枝聚合丙烯酸对PET表面改性的溶剂效应研究[J]. 山东大学学报(工学版), 2010, 40(6): 107-112.
[15] 李华銮1,高培法2,穆乃敏3,王琳2. 分散性土的鉴别及改性试验[J]. 山东大学学报(工学版), 2010, 40(4): 92-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[5] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[6] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[7] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[8] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[9] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[10] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .