王秀红1,2, 郭庆强1, 李歧强1
WANG Xiu-hong1,2,GUO Qing-qiang1,LI Qi-qiang1
摘要: 基于高阶累积量(HOC)的自适应滤波器能够滤除高斯噪声或其它具有对称概率分布函数的噪声,其解法一般采用的是梯度搜索法,但是梯度搜索过程难以避免局部收敛而且计算复杂.粒子群优化算法(PSO)具有算法简洁,易于实现,且不需要梯度信息等优势.使用粒子群优化算法求解高阶累积量自适应滤波器系数优化问题,为滤波器参数的优化提供了一种新的思路.仿真结果表明,使用PSO优化算法求解自适应滤波器系数能获得更高的精度.同时PSO算法受系统跃变的影响较小,因此它在求解非平稳过程模型系统时具有一定的优势.
中图分类号:
| [1] | 董红斌, 张广江, 逄锦伟, 韩启龙. 一种基于协同进化方法的聚类集成算法[J]. 山东大学学报(工学版), 2015, 45(2): 1-9. |
| [2] | 徐龙琴1,刘双印1,2,3,4*. 基于APSO-WLSSVR的水质预测模型[J]. 山东大学学报(工学版), 2012, 42(5): 80-86. |
| [3] | 张劲松,李歧强,王朝霞 . 基于混沌搜索的混和粒子群优化算法[J]. 山东大学学报(工学版), 2007, 37(1): 47-50 . |
|
||